论文标题

将人类价值观建立到推荐系统中:跨学科综合

Building Human Values into Recommender Systems: An Interdisciplinary Synthesis

论文作者

Stray, Jonathan, Halevy, Alon, Assar, Parisa, Hadfield-Menell, Dylan, Boutilier, Craig, Ashar, Amar, Beattie, Lex, Ekstrand, Michael, Leibowicz, Claire, Sehat, Connie Moon, Johansen, Sara, Kerlin, Lianne, Vickrey, David, Singh, Spandana, Vrijenhoek, Sanne, Zhang, Amy, Andrus, McKane, Helberger, Natali, Proutskova, Polina, Mitra, Tanushree, Vasan, Nina

论文摘要

推荐系统是在许多世界上最大的平台和应用程序中选择,过滤和个性化内容的算法。因此,他们对个人和社会的积极和负面影响已得到广泛的理论和研究。我们的总体问题是如何确保推荐系统制定其服务的个人和社会的价值观。以原则性的方式解决这个问题,需要有关推荐设计和运营的技术知识,并且在批判性地取决于来自社会科学,伦理,经济学,心理学,政策和法律在内的各种领域的见解。本文是从不同角度综合理论和实践的多学科努力,目的是提供共同的语言,表达当前的设计方法并确定开放的问题。这不是对这个庞大空间的全面调查,而是我们多样化的作者队列确定的一组亮点。我们收集了一组似乎与跨不同领域的推荐系统最相关的值,然后从当前行业实践,测量,产品设计和政策方法的角度检查它们。重要的开放问题包括用于定义价值和解决权衡取舍的多利益相关者流程,更好的价值驱动的测量,人们使用的推荐控制,非行为算法反馈,长期成果的优化,对因果关系的促进,推荐人的效果,学术界效果,学术领域的研究协作,跨学科的政策。

Recommender systems are the algorithms which select, filter, and personalize content across many of the worlds largest platforms and apps. As such, their positive and negative effects on individuals and on societies have been extensively theorized and studied. Our overarching question is how to ensure that recommender systems enact the values of the individuals and societies that they serve. Addressing this question in a principled fashion requires technical knowledge of recommender design and operation, and also critically depends on insights from diverse fields including social science, ethics, economics, psychology, policy and law. This paper is a multidisciplinary effort to synthesize theory and practice from different perspectives, with the goal of providing a shared language, articulating current design approaches, and identifying open problems. It is not a comprehensive survey of this large space, but a set of highlights identified by our diverse author cohort. We collect a set of values that seem most relevant to recommender systems operating across different domains, then examine them from the perspectives of current industry practice, measurement, product design, and policy approaches. Important open problems include multi-stakeholder processes for defining values and resolving trade-offs, better values-driven measurements, recommender controls that people use, non-behavioral algorithmic feedback, optimization for long-term outcomes, causal inference of recommender effects, academic-industry research collaborations, and interdisciplinary policy-making.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源