论文标题
发现并减轻偏见的替代网络的未知偏见
Discover and Mitigate Unknown Biases with Debiasing Alternate Networks
论文作者
论文摘要
已经发现深层图像分类器可以从数据集中学习偏见。为了减轻偏见,大多数以前的方法都需要标签受保护的属性(例如,年龄,肤色)为全套,这有两个限制:1)当标签不可用时,它是不可行的; 2)它们无法减轻未知的偏见 - 人类没有先入为主的偏见。为了解决这些问题,我们提出了偏见的替代网络(Debian),该网络包括两个网络 - 一个发现者和一个分类器。通过以替代方式培训,发现者试图找到分类器的多个未知偏见而没有任何偏见注释,并且分类器的目的是学习发现者确定的偏见。虽然先前的作品根据单个偏差评估了偏见的结果,但我们创建了多色MNIST数据集,以更好地缓解多个偏差设置中的多个偏差,这不仅在以前的方法中揭示了Debian在识别和减轻多种偏见时的优势。我们进一步对现实世界数据集进行了广泛的实验,表明Debian中的发现者可以识别人类可能很难找到的未知偏见。关于辩护,Debian实现了强烈的偏见缓解效果。
Deep image classifiers have been found to learn biases from datasets. To mitigate the biases, most previous methods require labels of protected attributes (e.g., age, skin tone) as full-supervision, which has two limitations: 1) it is infeasible when the labels are unavailable; 2) they are incapable of mitigating unknown biases -- biases that humans do not preconceive. To resolve those problems, we propose Debiasing Alternate Networks (DebiAN), which comprises two networks -- a Discoverer and a Classifier. By training in an alternate manner, the discoverer tries to find multiple unknown biases of the classifier without any annotations of biases, and the classifier aims at unlearning the biases identified by the discoverer. While previous works evaluate debiasing results in terms of a single bias, we create Multi-Color MNIST dataset to better benchmark mitigation of multiple biases in a multi-bias setting, which not only reveals the problems in previous methods but also demonstrates the advantage of DebiAN in identifying and mitigating multiple biases simultaneously. We further conduct extensive experiments on real-world datasets, showing that the discoverer in DebiAN can identify unknown biases that may be hard to be found by humans. Regarding debiasing, DebiAN achieves strong bias mitigation performance.