论文标题

孤立的超曲面的奇异性

Isolated singularities of hypersurfaces

论文作者

Sadykov, Rustam, Trunov, Stanislav

论文摘要

由Seifert和Threlfall引入,圆柱形社区是Lusternik-Schnirelmann理论中必不可少的工具。我们猜想,平滑功能的每个孤立临界点都允许圆柱球邻居。我们表明,猜想对于锥形临界点,角膜合​​理的临界点以及满足Rothe H假设的关键点是正确的。特别是,至少对于那些不是无限退化的关键点,猜想至少是正确的。

Introduced by Seifert and Threlfall, cylindrical neighborhoods is an essential tool in the Lusternik-Schnirelmann theory. We conjecture that every isolated critical point of a smooth function admits a cylindrical ball neighborhood. We show that the conjecture is true for cone-like critical points, Cornea reasonable critical points, and critical points that satisfy the Rothe H hypothesis. In particular, the conjecture holds true at least for those critical points that are not infinitely degenerate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源