论文标题

一个有效的基于骨架的时间动作分段的有效框架

An Efficient Framework for Few-shot Skeleton-based Temporal Action Segmentation

论文作者

Xu, Leiyang, Wang, Qiang, Lin, Xiaotian, Yuan, Lin

论文摘要

时间动作分割(TAS)旨在在长期未经修剪的动作序列中对作用进行分类和定位。随着深度学习的成功,出现了许多深入的行动分割模型。但是,很少有TAS仍然是一个具有挑战性的问题。这项研究提出了一个基于少数骨架的TA的有效框架,包括数据增强方法和改进的模型。此处介绍了基于运动插值的数据增强方法,以解决数据不足的问题,并可以通过合成动作序列来大大增加样品数量。此外,我们将连接式时间分类(CTC)层与设计用于基于骨架的TA的网络以获得优化的模型。利用CTC可以增强预测和地面真理之间的时间一致性,并进一步改善细分结果的分割结果指标。对公共和自我结构数据集进行的广泛实验,包括两个小规模数据集和一个大型数据集,显示了两种建议方法在改善基于少数骨架的TAS任务的性能方面的有效性。

Temporal action segmentation (TAS) aims to classify and locate actions in the long untrimmed action sequence. With the success of deep learning, many deep models for action segmentation have emerged. However, few-shot TAS is still a challenging problem. This study proposes an efficient framework for the few-shot skeleton-based TAS, including a data augmentation method and an improved model. The data augmentation approach based on motion interpolation is presented here to solve the problem of insufficient data, and can increase the number of samples significantly by synthesizing action sequences. Besides, we concatenate a Connectionist Temporal Classification (CTC) layer with a network designed for skeleton-based TAS to obtain an optimized model. Leveraging CTC can enhance the temporal alignment between prediction and ground truth and further improve the segment-wise metrics of segmentation results. Extensive experiments on both public and self-constructed datasets, including two small-scale datasets and one large-scale dataset, show the effectiveness of two proposed methods in improving the performance of the few-shot skeleton-based TAS task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源