论文标题

贝叶斯高参数优化,用于深神经网络入侵检测

Bayesian Hyperparameter Optimization for Deep Neural Network-Based Network Intrusion Detection

论文作者

Masum, Mohammad, Shahriar, Hossain, Haddad, Hisham, Faruk, Md Jobair Hossain, Valero, Maria, Khan, Md Abdullah, Rahman, Mohammad A., Adnan, Muhaiminul I., Cuzzocrea, Alfredo

论文摘要

传统的网络入侵检测方法遇到可行性和可持续性问题,以打击现代,复杂和不可预测的安全攻击。深层神经网络(DNN)已成功地用于入侵检测问题。最佳使用基于DNN的分类器需要仔细调整超参数。手动调整超参数是乏味,耗时且计算上昂贵的。因此,需要一种自动技术来找到最佳的超参数,以便在入侵检测中获得DNN的最佳利用。本文提出了一个新型的基于贝叶斯优化的框架,用于自动优化超参数,以确保最佳的DNN体系结构。我们评估了用于网络入侵检测基准数据集NSL-KDD上提出的框架的性能。实验结果表明,由于最终的DNN体系结构,就准确性,精度,召回和F1得分而言,框架的有效性与基于随机搜索优化的方法相比,其入侵检测性能明显更高。

Traditional network intrusion detection approaches encounter feasibility and sustainability issues to combat modern, sophisticated, and unpredictable security attacks. Deep neural networks (DNN) have been successfully applied for intrusion detection problems. The optimal use of DNN-based classifiers requires careful tuning of the hyper-parameters. Manually tuning the hyperparameters is tedious, time-consuming, and computationally expensive. Hence, there is a need for an automatic technique to find optimal hyperparameters for the best use of DNN in intrusion detection. This paper proposes a novel Bayesian optimization-based framework for the automatic optimization of hyperparameters, ensuring the best DNN architecture. We evaluated the performance of the proposed framework on NSL-KDD, a benchmark dataset for network intrusion detection. The experimental results show the framework's effectiveness as the resultant DNN architecture demonstrates significantly higher intrusion detection performance than the random search optimization-based approach in terms of accuracy, precision, recall, and f1-score.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源