论文标题
APHMM:加速剖面隐藏的马尔可夫模型,用于快速和节能的基因组分析
ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-Efficient Genome Analysis
论文作者
论文摘要
剖面隐藏的马尔可夫模型(PHMM)广泛用于各种生物信息学应用中,以识别生物学序列(例如DNA或蛋白质序列)之间的相似性。在PHMM中,序列表示为图结构。这些概率随后用于计算序列和pHMM图之间的相似性得分。 Baum-Welch算法是一种普遍且高度准确的方法,它利用这些概率来优化和计算相似性得分。但是,Baum-Welch算法是计算密集型的,现有解决方案提供固定的PHMM设计的仅软件或仅硬件方法。我们迫切需要对PHMM的Baum-Welch算法中的主要低效率来解决灵活,高性能和节能的HW/SW共同设计。 我们引入了APHMM,这是第一个柔性加速框架,旨在显着减少与PHMMS的Baum-Welch算法相关的计算和能量开销。 APHMM通过1)设计灵活的硬件来适应各种PHMM设计,2)通过纪念技术的芯片内存来利用可预测的数据依赖性模式,3)迅速使用基于硬件的过滤器,使用基于硬件的过滤器来利用可忽略的计算,并使用基于硬件的过滤量来利用可预测的数据依赖性,并解决了可预测的数据依赖性模式,以解决可容纳可预测的数据依赖性模式,并使用基于硬件的过滤器,使用基于硬件的过滤器,并使用基于硬件的过滤器来利用可预测的数据依赖模式。 与CPU,GPU和Baum -Welch算法的CPU,GPU和FPGA实现相比,APHMM达到15.55倍-260.03X,1.83倍-5.34倍和27.97倍的实质速度。 APHMM在三个关键的生物信息学应用中的最先进的CPU实现:1)误差校正,2)蛋白质家族搜索和3)多个序列对准,1.29x -59.94x,1.03x -1.03x -1.75x,1.75x和1.03x -1.03x -1.95x -1.95x,同时提高其能量的效率,同时1.114.114.444x -94.24x-114x -1.44x -1.44x -1.44x -1.4x4x -1.4x4x -1.4x4x-114x -1 1.4x4x -1.4x4x-114x -1.4x4x-114x -1.4x4x -1.14x -1 1.4x4x。
Profile hidden Markov models (pHMMs) are widely employed in various bioinformatics applications to identify similarities between biological sequences, such as DNA or protein sequences. In pHMMs, sequences are represented as graph structures. These probabilities are subsequently used to compute the similarity score between a sequence and a pHMM graph. The Baum-Welch algorithm, a prevalent and highly accurate method, utilizes these probabilities to optimize and compute similarity scores. However, the Baum-Welch algorithm is computationally intensive, and existing solutions offer either software-only or hardware-only approaches with fixed pHMM designs. We identify an urgent need for a flexible, high-performance, and energy-efficient HW/SW co-design to address the major inefficiencies in the Baum-Welch algorithm for pHMMs. We introduce ApHMM, the first flexible acceleration framework designed to significantly reduce both computational and energy overheads associated with the Baum-Welch algorithm for pHMMs. ApHMM tackles the major inefficiencies in the Baum-Welch algorithm by 1) designing flexible hardware to accommodate various pHMM designs, 2) exploiting predictable data dependency patterns through on-chip memory with memoization techniques, 3) rapidly filtering out negligible computations using a hardware-based filter, and 4) minimizing redundant computations. ApHMM achieves substantial speedups of 15.55x - 260.03x, 1.83x - 5.34x, and 27.97x when compared to CPU, GPU, and FPGA implementations of the Baum-Welch algorithm, respectively. ApHMM outperforms state-of-the-art CPU implementations in three key bioinformatics applications: 1) error correction, 2) protein family search, and 3) multiple sequence alignment, by 1.29x - 59.94x, 1.03x - 1.75x, and 1.03x - 1.95x, respectively, while improving their energy efficiency by 64.24x - 115.46x, 1.75x, 1.96x.