论文标题
GIPSO:在3D激光雷达细分中进行在线适应的几何知情传播
GIPSO: Geometrically Informed Propagation for Online Adaptation in 3D LiDAR Segmentation
论文作者
论文摘要
3D点云语义细分对于自动驾驶是基础。文献中的大多数方法都忽略了一个重要方面,即在处理动态场景时如何处理域转移。这可能会极大地阻碍自动驾驶车辆的导航能力。本文在该研究领域的最新技术发展。我们的第一个贡献包括分析点云分段中的新的未开发的方案,即无源的在线无监督域改编(SF-OUDA)。我们在实验上表明,最新的方法具有相当有限的能力,可以在线改编预训练的深层网络模型以在线方式看不到域。我们的第二个贡献是一种依赖于自适应自我训练和几何传播的方法,可以在线调整预训练的源模型,而无需源数据或目标标签。我们的第三个贡献是在一个充满挑战的设置中研究sf-ouda,其中源数据是合成的,目标数据是现实世界中捕获的点云。我们将最近的Synlidar数据集用作合成源,并引入了两个新的合成(源)数据集,这些数据集可以刺激未来的综合自动驾驶研究。我们的实验显示了我们分割方法对数千个现实点云的有效性。代码和合成数据集可在https://github.com/saltoricristiano/gipso-sfouda上找到。
3D point cloud semantic segmentation is fundamental for autonomous driving. Most approaches in the literature neglect an important aspect, i.e., how to deal with domain shift when handling dynamic scenes. This can significantly hinder the navigation capabilities of self-driving vehicles. This paper advances the state of the art in this research field. Our first contribution consists in analysing a new unexplored scenario in point cloud segmentation, namely Source-Free Online Unsupervised Domain Adaptation (SF-OUDA). We experimentally show that state-of-the-art methods have a rather limited ability to adapt pre-trained deep network models to unseen domains in an online manner. Our second contribution is an approach that relies on adaptive self-training and geometric-feature propagation to adapt a pre-trained source model online without requiring either source data or target labels. Our third contribution is to study SF-OUDA in a challenging setup where source data is synthetic and target data is point clouds captured in the real world. We use the recent SynLiDAR dataset as a synthetic source and introduce two new synthetic (source) datasets, which can stimulate future synthetic-to-real autonomous driving research. Our experiments show the effectiveness of our segmentation approach on thousands of real-world point clouds. Code and synthetic datasets are available at https://github.com/saltoricristiano/gipso-sfouda.