论文标题
超均匀密度分布之间的量子相变
Quantum phase transition between hyperuniform density distributions
论文作者
论文摘要
我们根据超均匀性研究在准碘潜力下的电子分布,旨在建立一种分类和分析方法,以用于在例如准晶体中实现的大量但有序的密度分布。使用Aubry-Andre-Harper模型,我们首先揭示了电子电荷分布改变了其特征,因为增加的准碘势会从扩展到局部化的局部变化。虽然电荷分布的这些变化既没有多纹理也不是翻译对称性的破坏,但它们的特征是超均匀度类别及其顺序度量。我们发现在费米水平的状态密度,电荷分布直方图与超均匀度类别之间存在非平凡的关系。除了电子 - 孔对称点外,其转变为三阶的一阶相变为不同的超均匀度类别。此外,我们将超均匀度度量度量标准概述为一个函数,以捕获密度分布的更详细的特征,以某种类比,将分形维度概括为多效率。
We study an electron distribution under a quasiperiodic potential in light of hyperuniformity, aiming to establish a classification and analysis method for aperiodic but orderly density distributions realized in, e.g., quasicrystals. Using the Aubry-Andre-Harper model, we first reveal that the electron-charge distribution changes its character as the increased quasiperiodic potential alters the eigenstates from extended to localized ones. While these changes of the charge distribution are characterized by neither multifractality nor translational-symmetry breaking, they are characterized by hyperuniformity class and its order metric. We find a nontrivial relationship between the density of states at the Fermi level, a charge-distribution histogram, and the hyperuniformity class. The change to a different hyperuniformity class occurs as a first-order phase transition except for an electron-hole symmetric point, where the transition is of the third order. Moreover, we generalize the hyperuniformity order metric to a function, to capture more detailed features of the density distribution, in some analogy with a generalization of the fractal dimension to a multifractal one.