论文标题

基于Correntropy的逻辑回归,具有自动相关性确定可靠的稀疏脑活动解码

Correntropy-Based Logistic Regression with Automatic Relevance Determination for Robust Sparse Brain Activity Decoding

论文作者

Li, Yuanhao, Chen, Badong, Shi, Yuxi, Yoshimura, Natsue, Koike, Yasuharu

论文摘要

最近的研究利用了稀疏的分类来预测高维大脑活动信号的分类变量,以暴露人类的意图和精神状态,并在模型训练过程中自动选择相关特征。但是,现有的稀疏分类模型可能会容易出现由大脑记录固有的噪声引起的性能降解。为了解决这个问题,我们旨在在本研究中提出一种新的健壮和稀疏分类算法。为此,我们将CorrentRopy学习框架引入基于自动相关性的稀疏分类模型,并提出了一种新的基于CorrentRopy的鲁棒稀疏逻辑回归算法。为了证明所提出算法的优质大脑活性解码性能,我们在合成数据集,脑电图(EEG)数据集和功能磁共振成像(FMRI)数据集上对其进行了评估。广泛的实验结果证实,不仅提出的方法可以在嘈杂且高维分类任务中实现更高的分类精度,而且还将为解码方案选择那些更有信息的功能。将Correntropy学习方法与自动相关性测定技术相结合,将显着提高相对于噪声的鲁棒性,从而导致更足够的稳健稀疏脑解码算法。它在现实世界的大脑活动解码和脑部计算机界面中提供了更强大的方法。

Recent studies have utilized sparse classifications to predict categorical variables from high-dimensional brain activity signals to expose human's intentions and mental states, selecting the relevant features automatically in the model training process. However, existing sparse classification models will likely be prone to the performance degradation which is caused by noise inherent in the brain recordings. To address this issue, we aim to propose a new robust and sparse classification algorithm in this study. To this end, we introduce the correntropy learning framework into the automatic relevance determination based sparse classification model, proposing a new correntropy-based robust sparse logistic regression algorithm. To demonstrate the superior brain activity decoding performance of the proposed algorithm, we evaluate it on a synthetic dataset, an electroencephalogram (EEG) dataset, and a functional magnetic resonance imaging (fMRI) dataset. The extensive experimental results confirm that not only the proposed method can achieve higher classification accuracy in a noisy and high-dimensional classification task, but also it would select those more informative features for the decoding scenarios. Integrating the correntropy learning approach with the automatic relevance determination technique will significantly improve the robustness with respect to the noise, leading to more adequate robust sparse brain decoding algorithm. It provides a more powerful approach in the real-world brain activity decoding and the brain-computer interfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源