论文标题
不确定性启发了水下图像增强
Uncertainty Inspired Underwater Image Enhancement
论文作者
论文摘要
基于深度学习的水下图像增强(UIE)中面临的主要挑战是地面真相高质量的图像是不可用的。大多数现有方法首先生成近似参考图,然后可以确定地训练增强网络。这种方法无法处理参考图的歧义。在本文中,我们将UIE解决为分布估计和共识过程。我们提出了一个新型的概率网络,以了解退化的水下图像的增强分布。具体而言,我们将条件变异自动编码器与自适应实例归一化结合在一起,以构建增强分布。之后,我们采用共识过程来根据分布中的一组样本来预测确定性结果。通过学习增强分布,我们的方法可以在某种程度上应对参考图标记中引入的偏差。此外,共识过程对于捕获强大而稳定的结果很有用。我们在两个广泛使用的现实水下图像增强数据集上检查了提出的方法。实验结果表明,我们的方法可实现可能的增强预测。同时,与最先进的UIE方法相比,共识估计会产生竞争性能。可在https://github.com/zhenqifu/puie-net上找到代码。
A main challenge faced in the deep learning-based Underwater Image Enhancement (UIE) is that the ground truth high-quality image is unavailable. Most of the existing methods first generate approximate reference maps and then train an enhancement network with certainty. This kind of method fails to handle the ambiguity of the reference map. In this paper, we resolve UIE into distribution estimation and consensus process. We present a novel probabilistic network to learn the enhancement distribution of degraded underwater images. Specifically, we combine conditional variational autoencoder with adaptive instance normalization to construct the enhancement distribution. After that, we adopt a consensus process to predict a deterministic result based on a set of samples from the distribution. By learning the enhancement distribution, our method can cope with the bias introduced in the reference map labeling to some extent. Additionally, the consensus process is useful to capture a robust and stable result. We examined the proposed method on two widely used real-world underwater image enhancement datasets. Experimental results demonstrate that our approach enables sampling possible enhancement predictions. Meanwhile, the consensus estimate yields competitive performance compared with state-of-the-art UIE methods. Code available at https://github.com/zhenqifu/PUIE-Net.