论文标题

学习模拟合作驾驶任务的潜在特征

Learning Latent Traits for Simulated Cooperative Driving Tasks

论文作者

DeCastro, Jonathan A., Gopinath, Deepak, Rosman, Guy, Sumner, Emily, Hakimi, Shabnam, Stent, Simon

论文摘要

在复杂的情况下,在人类和AI系统之间构建有效的组合策略,需要了解人类的个人偏好和行为。以前,此问题已以特定于案例或数据不可能的方式处理。在本文中,我们建立了一个框架,能够根据模拟驾驶员人群的数据来捕获人类的行为和偏好方面的紧凑型潜在表示。我们的框架在可用的范围内利用了人口中的样本的个人偏好和类型的知识来部署适合特定驱动因素的交互策略。然后,我们构建了一个轻巧的模拟环境Hmiway-env,以建模一种分散注意力的驾驶行为,并使用它为不同的驾驶员类型和火车干预政策生成数据。我们最终使用这种环境来量化区分驱动因素的能力和干预政策的有效性。

To construct effective teaming strategies between humans and AI systems in complex, risky situations requires an understanding of individual preferences and behaviors of humans. Previously this problem has been treated in case-specific or data-agnostic ways. In this paper, we build a framework capable of capturing a compact latent representation of the human in terms of their behavior and preferences based on data from a simulated population of drivers. Our framework leverages, to the extent available, knowledge of individual preferences and types from samples within the population to deploy interaction policies appropriate for specific drivers. We then build a lightweight simulation environment, HMIway-env, for modelling one form of distracted driving behavior, and use it to generate data for different driver types and train intervention policies. We finally use this environment to quantify both the ability to discriminate drivers and the effectiveness of intervention policies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源