论文标题

深度学习可控数据:评论

Controllable Data Generation by Deep Learning: A Review

论文作者

Wang, Shiyu, Du, Yuanqi, Guo, Xiaojie, Pan, Bo, Qin, Zhaohui, Zhao, Liang

论文摘要

在目标属性下设计和生成新数据一直吸引着各种关键应用,例如分子设计,图像编辑和语音合成。传统的手工制作方法在很大程度上依赖于专业知识经验和密集的人类努力,但仍然遭受科学知识和低通量的不足,无法支持有效,有效的数据生成。最近,深度学习的进步为表达方法提供了学习数据的基础表示和属性的机会。这种能力提供了确定数据的结构模式与功能特性之间的相互关系的新方法,并利用这种关系以生成结构数据,鉴于所需的属性。本文是一本系统的评论,解释了这个有前途的研究领域,通常称为可控的深度数据生成。首先,这篇文章提出了潜在的挑战并提供了初步。然后,本文正式定义了可控的深度数据生成,提出了各种技术的分类法,并总结了该特定领域中的评估指标。之后,本文介绍了可控的深度数据生成的令人兴奋的应用,实验分析并比较了现有作品。最后,本文重点介绍了可控制的深度数据生成的有希望的未来方向,并确定了五个潜在的挑战。

Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning has created the opportunity for expressive methods to learn the underlying representation and properties of data. Such capability provides new ways of determining the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationships to generate structural data, given the desired properties. This article is a systematic review that explains this promising research area, commonly known as controllable deep data generation. First, the article raises the potential challenges and provides preliminaries. Then the article formally defines controllable deep data generation, proposes a taxonomy on various techniques and summarizes the evaluation metrics in this specific domain. After that, the article introduces exciting applications of controllable deep data generation, experimentally analyzes and compares existing works. Finally, this article highlights the promising future directions of controllable deep data generation and identifies five potential challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源