论文标题

尼古拉地图是独一无二的吗?

Is the Nicolai map unique?

论文作者

Lechtenfeld, Olaf, Rupprecht, Maximilian

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The Nicolai map is a field transformation that relates supersymmetric theories at finite couplings $g$ with the free theory at $g=0$. It is obtained via an ordered exponential of the coupling flow operator integrated from $0$ to $g$. Allowing multiple couplings, we find that the map in general depends on the chosen integration contour in coupling space. This induces a large functional freedom in the construction of the Nicolai map, which cancels in all correlator computations. Under a certain condition on the coupling flow operator the ambiguity disappears, and the power-series expansion for the map collapses to a linear function in the coupling. A special role is played by topological (theta) couplings, which do not affect perturbative correlation functions but also alter the Nicolai map. We demonstate that for certain 'magical' theta values the uniqueness condition holds, providing an exact map polynomial in the fields and independent of the integration contour. This feature is related to critical points of the Nicolai map and the existence of 'instantons'. As a toy model, we work with $\mathcal{N}=1$ supersymmetric quantum mechanics. For a cubic superpotential and a theta term, we explicitly compute the one-, two- and three-point correlation function to one-loop order employing a graphical representation of the (inverse) Nicolai map in terms of tree diagrams, confirming the cancellation of theta dependence. Comparison of Nicolai and conventional Feynman perturbation theory nontrivially yields complete agreement, but only after adding all (1PI and 1PR) contributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源