论文标题

从近场热和真空波动到量子门的限制

Limits to Quantum Gate Fidelity from Near-Field Thermal and Vacuum Fluctuations

论文作者

Sun, Wenbo, Bharadwaj, Sathwik, Yang, Li-Ping, Hsueh, Yu-Ling, Wang, Yifan, Jiao, Dan, Rahman, Rajib, Jacob, Zubin

论文摘要

高保真量子门操作对于实现可伸缩量子电路至关重要。在旋转量子量子计算系统中,金属门和天线是量子运行,初始化和读数所必需的,这也通过增强电磁场的波动而引起损害。因此,由热和真空波动引起的evanevencent Wave johnson噪声(EWJN)成为重要的未固定噪声,这会引起自旋Qubits的衰变,并限制了量子门操作保真度。在这里,我们首先开发了EWJN的量子电动力学理论。然后,我们提出了一种基于体积积分方程的数值技术,以量化具有任意几何形状的纳米制造金属门附近的EWJN强度。我们研究了两个实验相关的量子计算平台中EWJN诱导的松弛过程的两个自旋Qubit Gate Fidelity的限制:(a)硅量子点系统和(b)钻石中的NV中心。最后,我们介绍了Lindbladian工程方法,以优化控制脉冲序列设计,并显示出对汉密尔顿工程的增强性能,以减轻热和真空波动的影响。我们的工作利用了计算电磁学,波动电动力学和开放量子系统的进步来抑制热和真空波动的影响,并达到两翼级闸门保真度的限制。

High-fidelity quantum gate operations are essential for achieving scalable quantum circuits. In spin qubit quantum computing systems, metallic gates and antennas which are necessary for qubit operation, initialization, and readout, also cause detriments by enhancing fluctuations of electromagnetic fields. Therefore evanescent wave Johnson noise (EWJN) caused by thermal and vacuum fluctuations becomes an important unmitigated noise, which induces the decay of spin qubits and limits the quantum gate operation fidelity. Here, we first develop a quantum electrodynamics theory of EWJN. Then we propose a numerical technique based on volume integral equations to quantify EWJN strength in the vicinity of nanofabricated metallic gates with arbitrary geometry. We study the limits to two spin-qubit gate fidelity from EWJN-induced relaxation processes in two experimentally relevant quantum computing platforms: (a) silicon quantum dot system and (b) NV centers in diamond. Finally, we introduce the Lindbladian engineering method to optimize the control pulse sequence design and show its enhanced performance over Hamiltonian engineering in mitigating the influence of thermal and vacuum fluctuations. Our work leverages advances in computational electromagnetics, fluctuational electrodynamics and open quantum systems to suppress the effects of thermal and vacuum fluctuations and reach the limits of two-spin-qubit gate fidelity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源