论文标题

使用幂律方案与具有可变迁移率的Cahn-Hilliard方程相结合的剪切液中的升高气泡的阻力系数:晶格玻尔兹曼研究和与实验进行比较

Drag coefficient of a rising bubble in a shear-thinning fluid using the power-law scheme coupled with a Cahn-Hilliard equation with a variable mobility: A lattice Boltzmann study and comparison with experiment

论文作者

Arani, Amirabbas Ghorbanpour, Haghani-Hassan-Abadi, Reza, Majidi, Mohammad, Rahimian, Mohammad-Hassan

论文摘要

这项研究旨在研究由牛顿和非牛顿成分组成的多组分流体流动的行为,尤其是在幂律流体中升高的气泡的末端速度。使用幂律方案扩展了最近的晶格玻尔兹曼(LB)模型,能够以高密度和粘度比模拟牛顿和非牛顿流体流量。同样,在本研究中引入了可变的迁移率,以最大程度地减少域中小气泡周围的非物理误差。使用恒定和可变的迁移率检查了三组分流体流系统。结果表明,每个组件都使用可变迁移率具有更大的稳定性,而恒定迁移率会导致界面耗散,从而逐渐导致质量损失。此外,进行了两个测试用例,包括两个平行板之间驱动的幂律流动流,以显示模型的准确性和能力。为了找到与网格无关的计算域,进行了网格独立性测试,以表明200*400域的大小适合我们的计​​算。然后,将升高气泡的终端速度与文献中现有的相关性进行了比较,这表明结果与现有研究非常吻合,因此六种不同情况下的平均相对误差为5.66%。此外,模拟示例在雷诺和eotvos数字的范围内符合实验结果良好的一致性。

This study aims to investigate the behavior of multicomponent fluid flows consisting of Newtonian and non-Newtonian components, especially terminal velocity of a rising bubble in a power-law fluid. A recent lattice Boltzmann (LB) model is extended using power-law scheme to be able to simulate both Newtonian and non-Newtonian fluid flows at high density and viscosity ratios. Also, a variable mobility is introduced in this study to minimize the unphysical error around small bubbles in the domain. A three-component fluid flow system is examined using a constant and variable mobility. It is shown that each component has more stability using variable mobility while constant mobility causes interface dissipation, leading to mass loss gradually. In addition, two test cases including power-law fluid flows driven between two parallel plates are conducted to show the accuracy and capability of the model. To find a grid-independent computational domain, a grid independency test is carried out to show that a 200*400 domain size is suitable for our computations. Then, terminal velocity of a rising bubble is compared to an existing correlation in the literature, indicating that the results are in good agreement with existing study so that average relative error in six different cases is 5.66 %. Also, the simulated examples show good conformity to experimental results over a range of the Reynolds and Eotvos numbers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源