论文标题

具有傅立叶测量的生成压缩传感的相干参数

A coherence parameter characterizing generative compressed sensing with Fourier measurements

论文作者

Berk, Aaron, Brugiapaglia, Simone, Joshi, Babhru, Plan, Yaniv, Scott, Matthew, Yilmaz, Özgür

论文摘要

在Bora等。 (2017年),在测量矩阵为高斯,信号结构是生成神经网络(GNN)的范围的设置中开发了一个数学框架,用于压缩感应保证。此后,当测量矩阵和/或网络权重遵循Subgaussian分布时,对使用GNN的压缩感应问题进行了广泛的分析。我们超越了高斯的假设,以测量矩阵,这些矩阵是通过在单位矩阵的随机行中均匀采样(包括作为特殊情况下采样的傅立叶测量值)来得出的。具体而言,我们证明了使用亚次采样的同步构造的第一个已知的限制等轴测保证,并提供了恢复界限,并解决了Scarlett等人的开放问题。 (2022,第10页)。恢复功效的特征在于连贯性,这是一个新参数,该参数测量了网络范围与测量矩阵之间的相互作用。我们的方法依赖于子空间计数论点和思想的核心概率。此外,我们提出了一种正规化策略,以使GNN与测量运算符具有有利的连贯性。我们提供引人注目的数值模拟,以支持这种正规训练策略:我们的策略产生了低相干网络,需要更少的信号回收测量。这与我们的理论结果一起支持连贯性作为自然量,用于表征与亚次采样的生成压缩感测。

In Bora et al. (2017), a mathematical framework was developed for compressed sensing guarantees in the setting where the measurement matrix is Gaussian and the signal structure is the range of a generative neural network (GNN). The problem of compressed sensing with GNNs has since been extensively analyzed when the measurement matrix and/or network weights follow a subgaussian distribution. We move beyond the subgaussian assumption, to measurement matrices that are derived by sampling uniformly at random rows of a unitary matrix (including subsampled Fourier measurements as a special case). Specifically, we prove the first known restricted isometry guarantee for generative compressed sensing with subsampled isometries and provide recovery bounds, addressing an open problem of Scarlett et al. (2022, p. 10). Recovery efficacy is characterized by the coherence, a new parameter, which measures the interplay between the range of the network and the measurement matrix. Our approach relies on subspace counting arguments and ideas central to high-dimensional probability. Furthermore, we propose a regularization strategy for training GNNs to have favourable coherence with the measurement operator. We provide compelling numerical simulations that support this regularized training strategy: our strategy yields low coherence networks that require fewer measurements for signal recovery. This, together with our theoretical results, supports coherence as a natural quantity for characterizing generative compressed sensing with subsampled isometries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源