论文标题
专家启发和数据噪声学习用于使用贝叶斯推断的材料流量分析
Expert Elicitation and Data Noise Learning for Material Flow Analysis using Bayesian Inference
论文作者
论文摘要
贝叶斯推论允许材料流分析(MFA)中不确定性的透明交流,并且随着新数据的可用性,不确定性的系统更新。但是,难以为MFA参数定义适当的先验并量化收集到的数据中的噪声。我们开始通过首先得出和实施适合生成MFA参数先验的专家启发程序来解决这些问题。其次,我们建议学习与参数不确定性并发的数据噪声。使用有关2012年美国钢流的案例研究证明了这些方法。采访了八名专家,以引起有关从原材料到中间商品的钢流不确定性分布的分布。专家的分布是根据对种子问题回答的专业知识组合和加权的。这些汇总分布构成了我们的模型参数的先验。对于学习数据噪声,还采用了明智的,弱信息的先验。然后进行贝叶斯推断以更新美国地质调查局(USGS)和世界钢铁协会(WSA)的MFA数据的参数和数据噪声不确定性。结果表明,在合并收集的数据时,MFA参数不确定性的降低。仅观察到数据噪声不确定性的适度降低。但是,在推断中使用多年的数据时,可以实现更大的减少。这些方法会产生透明的MFA和数据噪声不确定性从数据中学到的,而不是预先确定的数据噪声水平,从而为影响系统的决策提供了更强大的基础。
Bayesian inference allows the transparent communication of uncertainty in material flow analyses (MFAs), and a systematic update of uncertainty as new data become available. However, the method is undermined by the difficultly of defining proper priors for the MFA parameters and quantifying the noise in the collected data. We start to address these issues by first deriving and implementing an expert elicitation procedure suitable for generating MFA parameter priors. Second, we propose to learn the data noise concurrent with the parametric uncertainty. These methods are demonstrated using a case study on the 2012 U.S. steel flow. Eight experts are interviewed to elicit distributions on steel flow uncertainty from raw materials to intermediate goods. The experts' distributions are combined and weighted according to the expertise demonstrated in response to seeding questions. These aggregated distributions form our model parameters' prior. A sensible, weakly-informative prior is also adopted for learning the data noise. Bayesian inference is then performed to update the parametric and data noise uncertainty given MFA data collected from the United States Geological Survey (USGS) and the World Steel Association (WSA). The results show a reduction in MFA parametric uncertainty when incorporating the collected data. Only a modest reduction in data noise uncertainty was observed; however, greater reductions were achieved when using data from multiple years in the inference. These methods generate transparent MFA and data noise uncertainties learned from data rather than pre-assumed data noise levels, providing a more robust basis for decision-making that affects the system.