论文标题
在负有效温度下,准旋转量子奥托发动机的功率
Power of a quasi-spin quantum Otto engine at negative effective temperature
论文作者
论文摘要
加热发动机通常通过在不同(正)温度下用热浴交换热量来运行。但是,非热浴可能会导致显着的性能提升。在这里,我们通过实验分析了与原子Rubidium Bath相互作用的单个剖腹原子的准旋转状态下实现的单原子量子奥托发动机的功率输出。根据准旋转状态的测得的时间分辨群体,我们确定有效自旋温度和发动机量子波动的循环中的动力学,我们借助香农熵进行了量化。我们发现,在负温度状态下,功率得到了增强,并且在最大熵的一半处达到其最大值。与在正温度下(包括无限温度的情况)相比,在数量上,在负有效温度下运行发动机可将功率提高高达30%。同时,进入负温度状态可以将熵减少到接近零的值,从而在高功率输出下提供高度稳定的操作。此外,我们通过改变工作介质的水平数量来研究希尔伯特空间大小对量子发动机性能的影响。因此,我们的工作铺平了在高功率和有效的单原子量子发动机运行中波动控制的道路。
Heat engines usually operate by exchanging heat with thermal baths at different (positive) temperatures. Nonthermal baths may, however, lead to a significant performance boost. We here experimentally analyze the power output of a single-atom quantum Otto engine realized in the quasi-spin states of individual Cesium atoms interacting with an atomic Rubidium bath. From measured time-resolved populations of the quasi-spin state, we determine the dynamics during the cycle of both the effective spin temperature and of the quantum fluctuations of the engine, which we quantify with the help of the Shannon entropy. We find that power is enhanced in the negative temperature regime, and that it reaches its maximum value at half the maximum entropy. Quantitatively, operating our engine at negative effective temperatures increases the power by up to 30% compared to operation at positive temperatures, including even the case of infinite temperature. At the same time, entering the negative temperature regime allows for reducing the entropy to values close to zero, offering highly stable operation at high power output. We furthermore numerically investigate the influence of the size of the Hilbert space on the performance of the quantum engine by varying the number of levels of the working medium. Our work thereby paves the way to fluctuation control in the operation of high-power and efficient single-atom quantum engines.