论文标题

关于溶解液的缓慢漂移:米兰科维奇周期和平均全球温度

On the Slow Drift of Solstices: Milankovic Cycles and Mean Global Temperature

论文作者

Lopes, F., Courtillot, V., Gibert, D., Mouël, J-L. Le

论文摘要

地球的革命是通过其旋转轴的倾向​​变化来改变的。尽管重力场是中心的,但地球的轨迹并未封闭,春分却漂移。米兰科维奇(Milankovic,1920年)认为,最短的溶解度期为20,7kyr:一个半球的夏至发生在近日和阿菲利昂的每11公里。我们已将时间序列提交了地球的旋转极,全局平均表面温度和世纪的时间序列,以迭代奇异频谱分析。 ISSA从每个趋势,1年和60年组件中提取。地球围绕太阳周围的明显漂移和全球平均温度都表现出强烈的60年振荡。溶剂的“固定日期”实际上漂移。比较旋转杆的冬季和夏至位置的时间演变以及温度的第一个ISSA成分(趋势)可以识别一些常见特征。米兰科维奇(Milankovic)的基本方程将在地球上给定位置接收到的热量的衍生物与太阳日期,位置坐标的已知函数,太阳能下降和小时角,对太阳 - 地球距离的逆向依赖性。我们已经将溶汤的漂移作为与太阳的距离的函数转化为米兰科维奇的几何缓慢理论。就60岁的ISSA温度趋势的第一个衍生物而言,将60yr的ISSA溶解度的倒数平方转移了15年,即及时的正交,这两条曲线将两条曲线置于准脱离的叠加中。偶然巧合的可能性似乎很低。当没有随附模型时,相关性并不意味着因果关系。在这里,米兰科维奇的方程式可以被视为被广泛接受的模型。本文确定了观测和数学公式之间一致的案例。

The Earth's revolution is modified by changes in inclination of its rotation axis. Despite the fact that the gravity field is central, the Earth's trajectory is not closed and the equinoxes drift. Milankovic (1920) argued that the shortest precession period of solstices is 20,7kyr: the Summer solstice in one hemisphere takes place alternately every 11kyr at perihelion and at aphelion. We have submitted the time series for the Earth's pole of rotation, global mean surface temperature and ephemeris to iterative Singular Spectrum Analysis. iSSA extracts from each a trend, a 1yr and a 60yr component. Both the apparent drift of solstices of Earth around the Sun and the global mean temperature exhibit a strong 60yr oscillation. The "fixed dates" of solstices actually drift. Comparing the time evolution of the Winter and Summer solstices positions of the rotation pole and the first iSSA component (trend) of the temperature allows one to recognize some common features. A basic equation from Milankovic links the derivative of heat received at a given location on Earth to solar insolation, known functions of the location coordinates, solar declination and hour angle, with an inverse square dependence on the Sun-Earth distance. We have translated the drift of solstices as a function of distance to the Sun into the geometrical insolation theory of Milankovic. Shifting the inverse square of the 60yr iSSA drift of solstices by 15 years with respect to the first derivative of the 60yr iSSA trend of temperature, that is exactly a quadrature in time, puts the two curves in quasi-exact superimposition. The probability of a chance coincidence appears very low. Correlation does not imply causality when there is no accompanying model. Here Milankovic's equation can be considered as a model that is widely accepted. This paper identifies a case of agreement between observations and a mathematical formulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源