论文标题

多组分垂直对流中的双扩散运输

Double-diffusive transport in multicomponent vertical convection

论文作者

Howland, Christopher J., Verzicco, Roberto, Lohse, Detlef

论文摘要

通过在盐水中消融垂直冰面的动机,我们使用三维直接数值模拟来研究两尺度垂直对流的热量和盐通量。对于以对流为主的制度中与冰山界面相关的参数,我们观察到盐度场驱动对流,并且热量基本上是作为被动标量运输的。通过改变热和盐的扩散比(即刘易斯数$ le $),我们确定不同的分子扩散率如何影响通过系统的标量通量。远离墙壁,我们发现热运输是由湍流的prandtl数量$ pr_t \约1 $确定的,而这种双重延伸效果实际上可以忽略不计。但是,分子扩散率的差异起着接近边界的重要作用。在(不切实际的)情况下,盐扩散速度的速度比热量快,盐与热量的比率将缩放为$ le^{1/3} $,与经典的嵌套标量边界层一致。但是,在更快的热量扩散的现实情况下(相对于盐),我们观察到向通量比率的$ le^{1/2} $缩放的过渡。这与超出粘性边界层厚度的热边界层宽度相吻合。我们发现,这种过渡不是由关键的刘易斯号码决定的,而是由关键的prandtl数字$ pr \ pr \ 10 $,略低于冷海水$ pr = 14 $。我们将结果与对冰架下的剪切和双扩散流的类似研究进行了比较,并讨论了大规模冰山模型中通量的影响。通过将我们的结果与冰山界面热力学结合,我们描述了通量比如何影响界面盐度,从而如何影响溶质对流和消融速率的强度。

Motivated by the ablation of vertical ice faces in salt water, we use three-dimensional direct numerical simulations to investigate the heat and salt fluxes in two-scalar vertical convection. For parameters relevant to ice-ocean interfaces in the convection-dominated regime, we observe that the salinity field drives the convection and that heat is essentially transported as a passive scalar. By varying the diffusivity ratio of heat and salt (i.e., the Lewis number $Le$), we identify how the different molecular diffusivities affect the scalar fluxes through the system. Away from the walls, we find that the heat transport is determined by a turbulent Prandtl number of $Pr_t\approx 1$ and that double-diffusive effects are practically negligible. However, the difference in molecular diffusivities plays an important role close to the boundaries. In the (unrealistic) case where salt diffused faster than heat, the ratio of salt-to-heat fluxes would scale as $Le^{1/3}$, consistent with classical nested scalar boundary layers. However, in the realistic case of faster heat diffusion (relative to salt), we observe a transition towards a $Le^{1/2}$ scaling of the ratio of the fluxes. This coincides with the thermal boundary layer width growing beyond the thickness of the viscous boundary layer. We find that this transition is not determined by a critical Lewis number, but rather by a critical Prandtl number $Pr\approx 10$, slightly below that for cold seawater where $Pr=14$. We compare our results to similar studies of sheared and double-diffusive flow under ice shelves, and discuss the implications for fluxes in large-scale ice-ocean models. By coupling our results to ice-ocean interface thermodynamics, we describe how the flux ratio impacts the interfacial salinity, and hence the strength of solutal convection and the ablation rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源