论文标题
拖拉机原子干涉法的原理
Principles of tractor atom interferometry
论文作者
论文摘要
我们提出了基于三维原子的限制和运输的拖拉机原子干涉仪(TAI)的可能设计概念。限制可降低设备的大小和波动包装分散体,实现任意保持时间,并促进控制以创建复杂的轨迹,从而可以优化以取消不需要的灵敏度,快速分裂和重组,并抑制有害的非绝热激发。因此,该设计允许进一步发展紧凑,高敏性,量子传感技术。特别是,我们专注于实施量子增强的加速度计和陀螺仪。我们讨论了旋转依赖性和标量捕获势的TAI方案。使用最佳控制理论,我们证明了在时间尺度上的波函数的分裂两个数量级比使用绝热动力学的先前提案短,从而最大程度地提高了在完全分离时所花费的时间,在该分离中积累了干涉阶段。最后,我们探讨了在原子之间包括非古典相关性以提高灵敏度的可能性。 TAI的性能估算给基于原子互动测量法的传感提供了有希望的观点,大大超过了当前最新设备的敏感性。
We present possible design concepts for a tractor atom interferometer (TAI) based on three-dimensional confinement and transport of ultracold atoms. The confinement reduces device size and wave-packet dispersion, enables arbitrary holding times, and facilitates control to create complex trajectories that allow for optimization to cancel unwanted sensitivity, fast splitting and recombination, and suppression of detrimental nonadiabatic excitation. Thus, the design allows for further advancement of compact, high-sensitivity, quantum sensing technology. In particular, we focus on the implementation of quantum-enhanced accelerometers and gyroscopes. We discuss TAI protocols for both spin-dependent and scalar trapping potentials. Using optimal control theory, we demonstrate the splitting of the wave function on a time scale two orders of magnitude shorter than the previous proposal using adiabatic dynamics, thus maximizing the time spent at full separation, where the interferometric phase is accumulated. Lastly, we explore the possibility of including non-classical correlations between the atoms to improve sensitivity. The performance estimates for TAI give a promising perspective for atom-interferometry-based sensing, significantly exceeding the sensitivities of current state-of-the-art devices.