论文标题
通过非政策反馈在线学习
Online Learning with Off-Policy Feedback
论文作者
论文摘要
我们研究了在偏向观察性模型下的对抗性匪徒问题中的在线学习问题,称为违反政策反馈。在这个连续的决策问题中,学习者无法直接观察其奖励,而是看到由另一个未知策略并行运行的奖励(行为策略)。学习者必须在这种情况下面临另一个挑战,而不是标准的探索 - 探索难题:由于他们控制以外的观察结果有限,因此学习者可能无法很好地估计每个政策的价值。为了解决这个问题,我们提出了一系列算法,以保证任何比较器政策与行为政策之间的自然不匹配概念的范围,从而提高了对观察结果良好覆盖的比较者的绩效。我们还为对抗性线性上下文匪徒的设置提供了扩展,并通过一组实验验证理论保证。我们的关键算法想法是调整最近在非政策强化学习背景下流行的悲观奖励估计量的概念。
We study the problem of online learning in adversarial bandit problems under a partial observability model called off-policy feedback. In this sequential decision making problem, the learner cannot directly observe its rewards, but instead sees the ones obtained by another unknown policy run in parallel (behavior policy). Instead of a standard exploration-exploitation dilemma, the learner has to face another challenge in this setting: due to limited observations outside of their control, the learner may not be able to estimate the value of each policy equally well. To address this issue, we propose a set of algorithms that guarantee regret bounds that scale with a natural notion of mismatch between any comparator policy and the behavior policy, achieving improved performance against comparators that are well-covered by the observations. We also provide an extension to the setting of adversarial linear contextual bandits, and verify the theoretical guarantees via a set of experiments. Our key algorithmic idea is adapting the notion of pessimistic reward estimators that has been recently popular in the context of off-policy reinforcement learning.