论文标题

有关恒定曲率空间的可促进模型的更多信息

More on superintegrable models on spaces of constant curvature

论文作者

Gonera, Cezary, Gonera, Joanna, de Lucas, Javier, Szczesek, Wioletta, Zawora, Bartosz

论文摘要

恒定曲率2D空间上的一般一般可促进系统可以通过在(地球)极坐标中分离的电势来定义。这些电势的径向部分对应于各向同性谐波振荡器或广义开普勒电位。相反,角成分通常是由先验的方程式隐含的。在本说明中,专门研究了具有广义开普勒类型的径向电势的先前研究的模型,该模型是根据基本功能构建的新的两参数家族。为了选择适当的参数,该家族还原为不对称的球形希格斯振荡器。

A known general class of superintegrable systems on 2D spaces of constant curvature can be defined by potentials separating in (geodesic) polar coordinates. The radial parts of these potentials correspond either to an isotropic harmonic oscillator or a generalised Kepler potential. The angular components, on the contrary, are given implicitly by a transcendental, in general, equation. In the present note, devoted to the previously less studied models with the radial potential of the generalised Kepler type, a new two-parameter family of relevant angular potentials is constructed in terms of elementary functions. For an appropriate choice of parameters, the family reduces to an asymmetric spherical Higgs oscillator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源