论文标题
量子连续性,量子圆形和Annuli的三角形
Quantum continuants, quantum rotundus and triangulations of annuli
论文作者
论文摘要
我们对多项式的列举解释为$ Q $ $ q $ formenters的分子和分母,由Morier-Genoud和Ovsienko介绍。所考虑的多项式是经典连续体及其周期性不变版本的量子类似物。组合模型涉及多边形和环体的三角剖分。我们证明,量子连续体是三角形多边形中路径的coarea生成函数,量子圆形量子是三角形环上闭环的(CO)区域生成的函数。
We give enumerative interpretations of the polynomials arising as numerators and denominators of the $q$-deformed rational numbers introduced by Morier-Genoud and Ovsienko. The considered polynomials are quantum analogues of the classical continuants and of their cyclically invariant versions called rotundi. The combinatorial models involve triangulations of polygons and annuli. We prove that the quantum continuants are the coarea-generating functions of paths in a triangulated polygon and that the quantum rotundi are the (co)area-generating functions of closed loops on a triangulated annulus.