论文标题
Romanus:强大的任务在模块化多传感器自动驾驶系统中卸载
Romanus: Robust Task Offloading in Modular Multi-Sensor Autonomous Driving Systems
论文作者
论文摘要
由于自动驾驶应用程序的高性能和安全要求,现代自动驾驶系统(AD)的复杂性一直在增长,刺激了对更复杂的硬件的需求,这可能会增加广告平台的能量足迹。在解决此问题时,Edge Computing有望涵盖自动驾驶应用程序,从而使计算密集型自治的任务能够在计算能力的边缘服务器下进行处理。但是,除了严格的鲁棒性要求外,ADS平台的复杂硬件体系结构还提出了任务卸载的并发症,这是自主驾驶所独有的。因此,我们提出了$ romanus $,这是一种具有多传感器处理管道的模块化广告平台的可靠和高效任务的方法。我们的方法需要两个阶段:(i)引入沿相关深度学习模型的执行路径的有效卸载点,以及(ii)基于深入强化学习的运行时解决方案的实现,以根据感知到的道路场景复杂性,网络连接性和服务器负载来调整操作模式。对象检测用例的实验表明,我们的方法比纯局部执行高14.99%,同时从鲁棒的卸载基线中降低了风险行为的77.06%。
Due to the high performance and safety requirements of self-driving applications, the complexity of modern autonomous driving systems (ADS) has been growing, instigating the need for more sophisticated hardware which could add to the energy footprint of the ADS platform. Addressing this, edge computing is poised to encompass self-driving applications, enabling the compute-intensive autonomy-related tasks to be offloaded for processing at compute-capable edge servers. Nonetheless, the intricate hardware architecture of ADS platforms, in addition to the stringent robustness demands, set forth complications for task offloading which are unique to autonomous driving. Hence, we present $ROMANUS$, a methodology for robust and efficient task offloading for modular ADS platforms with multi-sensor processing pipelines. Our methodology entails two phases: (i) the introduction of efficient offloading points along the execution path of the involved deep learning models, and (ii) the implementation of a runtime solution based on Deep Reinforcement Learning to adapt the operating mode according to variations in the perceived road scene complexity, network connectivity, and server load. Experiments on the object detection use case demonstrated that our approach is 14.99% more energy-efficient than pure local execution while achieving a 77.06% reduction in risky behavior from a robust-agnostic offloading baseline.