论文标题
使用Laplacian eigenmaps学习高维演示
Learning High Dimensional Demonstrations Using Laplacian Eigenmaps
论文作者
论文摘要
本文提出了一种新的方法,以学习由动态系统驱动的稳定机器人控制法。该方法需要单个演示,可以在任意高维度中推断出稳定的动力学。该方法依赖于存在一个潜在空间的想法,在该空间中,非线性动力学出现准线性。原始的非线性动力学通过利用图形嵌入的属性来映射到稳定的线性DS中。我们表明,图拉普拉斯图的特征分类导致在二维中的线性嵌入,并在较高的维度中进行准线性。非线性术语消失,随着数据点的数量增加而呈指数式消失,并且对于较大的点,嵌入似乎是线性的。我们表明,这种新的嵌入能够在高维度上建模高度非线性动力学,并以重建精度和嵌入所需的参数数量克服替代技术。我们证明了其适用于控制要在太空中执行复杂自由运动的实际机器人。
This article proposes a novel methodology to learn a stable robot control law driven by dynamical systems. The methodology requires a single demonstration and can deduce a stable dynamics in arbitrary high dimensions. The method relies on the idea that there exists a latent space in which the nonlinear dynamics appears quasi linear. The original nonlinear dynamics is mapped into a stable linear DS, by leveraging on the properties of graph embeddings. We show that the eigendecomposition of the Graph Laplacian results in linear embeddings in two dimensions and quasi-linear in higher dimensions. The nonlinear terms vanish, exponentially as the number of datapoints increase, and for large density of points, the embedding appears linear. We show that this new embedding enables to model highly nonlinear dynamics in high dimension and overcomes alternative techniques in both precision of reconstruction and number of parameters required for the embedding. We demonstrate its applicability to control real robot tasked to perform complex free motion in space.