论文标题

通过准确代表原子极张量来从机器学习中进行光谱

Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor

论文作者

Schienbein, Philipp

论文摘要

振动光谱是阐明显微镜结构和动力学的关键技术。但是,没有理论方法,通常很难在显微镜水平上理解这种光谱。从头算分子动力学反复被证明适合此目的,但是,计算成本可能令人生畏。在这里,E(3) - 等级神经网络E3NN用于拟合液态水的原子极性张量,后者在现有的分子动力学模拟的基础上拟合。值得注意的是,引入的方法是一般的,因此也可以转移到任何其他系统。目标属性是最基本的,可以访问红外光谱,更重要的是,它是将红外光谱特征直接分配到核运动的非常强大的工具 - 过去一直在追求的连接,但由于计算成本过高而仅使用严重的近似值。这里引入的方法克服了这种瓶颈。为了基准基准机器学习模型,计算了液态水的红外光谱,确实显示出与显式参考计算的极好的一致性。总之,提出的方法提供了一种新的途径,可以从分子动力学模拟中计算准确的IR光谱,并将促进在显微镜水平上理解此类光谱。

Vibrational spectroscopy is a key technique to elucidate microscopic structure and dynamics. Without the aid of theoretical approaches, it is however, often difficult to understand such spectra at a microscopic level. Ab initio molecular dynamics have repeatedly proved to be suitable for this purpose, however, the computational cost can be daunting. Here, the E(3)-equivariant neural network e3nn is used to fit the atomic polar tensor of liquid water a posteriori on top of existing molecular dynamics simulations. Notably, the introduced methodology is general and thus transferable to any other system as well. The target property is most fundamental, gives access to the IR spectrum and, more importantly, it is a highly powerful tool to directly assign IR spectral features to nuclear motion -- a connection which has been pursued in the past but only using severe approximations due to the prohibitive computational cost. The herein introduced methodology overcomes this bottleneck. To benchmark the machine learning model, the IR spectrum of liquid water is calculated, indeed showing excellent agreement with the explicit reference calculation. In conclusion, the presented methodology gives a new route to calculate accurate IR spectra from molecular dynamics simulations and will facilitate the understanding of such spectra on a microscopic level.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源