论文标题
自然视觉图像重建的脑启发的解码器
The Brain-Inspired Decoder for Natural Visual Image Reconstruction
论文作者
论文摘要
从大脑活动中解码图像一直是一个挑战。由于深度学习的发展,有可用的工具可以解决此问题。解码图像旨在将神经尖峰列车映射到低级视觉特征和高级语义信息空间。最近,有一些研究从尖峰列车解码的研究,但是,这些研究更少关注神经科学的基础,很少有研究将接受场合并为视觉图像重建。在本文中,我们提出了一种具有生物学特性的深度学习神经网络体系结构,以从尖峰火车中重建视觉图像。据我们所知,我们实施了一种将接收场属性矩阵集成到损失函数中的方法。我们的模型是从神经尖峰火车到图像的端到端解码器。我们不仅将Gabor过滤器合并到自动编码器中,该自动编码器用于生成图像,还提出了具有接收场特性的损失函数。我们在两个数据集上评估了我们的解码器,这些数据集包含猕猴的一级视觉皮层神经尖峰和sal虫视网膜神经节细胞(RGC)峰值。我们的结果表明,我们的方法可以有效地结合感受的特征以重建图像,从而为基于神经信息提供新的视觉重建方法。
Decoding images from brain activity has been a challenge. Owing to the development of deep learning, there are available tools to solve this problem. The decoded image, which aims to map neural spike trains to low-level visual features and high-level semantic information space. Recently, there are a few studies of decoding from spike trains, however, these studies pay less attention to the foundations of neuroscience and there are few studies that merged receptive field into visual image reconstruction. In this paper, we propose a deep learning neural network architecture with biological properties to reconstruct visual image from spike trains. As far as we know, we implemented a method that integrated receptive field property matrix into loss function at the first time. Our model is an end-to-end decoder from neural spike trains to images. We not only merged Gabor filter into auto-encoder which used to generate images but also proposed a loss function with receptive field properties. We evaluated our decoder on two datasets which contain macaque primary visual cortex neural spikes and salamander retina ganglion cells (RGCs) spikes. Our results show that our method can effectively combine receptive field features to reconstruct images, providing a new approach to visual reconstruction based on neural information.