论文标题
关于在固定点具有非隔离线性线性部分的生物形态的线性化
On linearization of biholomorphism with non-semi-simple linear part at a fixed point
论文作者
论文摘要
我们证明了(c n,0)的生物形态的细菌的全体形态线性化,固定了起源,线性部分在以下假设下具有非平凡的约旦障碍物的点:我们首先假设特征值比1小于1,并且它们是非偏差的。我们还假设他们不仅满足了经典的双养生条件,还满足了与准谐和现象相关的新型二磷剂样条件。
We prove the holomorphic linearizability of germs of biholomorphisms of (C n , 0), fixing the origin, point at which the linear part has nontrivial Jordan blocks under the following assumptions : We first assume the eigenvalues are of modulus less or equal than 1, and that they are non-resonant. We also assume that they satisfied not only a classical Diophantine condition but also new Diophantine-like conditions related to quasi-resonance phenomena.