论文标题
在弯曲空间I上的Schrödinger类型半线性随机方程的解理论 - 具有均匀界限系数的运算符
Solution theory to semilinear stochastic equations of Schrödinger type on curved spaces I -- Operators with uniformly bounded coefficients
论文作者
论文摘要
我们研究了Schrödinger型随机部分微分方程的库奇问题,并在弯曲空间上具有均匀界限系数。我们在系数,漂移和扩散项,考奇(Cauchy)数据以及与噪声相关的光谱量度上提供了条件。
We study the Cauchy problem for Schrödinger type stochastic partial differential equations with uniformly bounded coefficients on a curved space. We give conditions on the coefficients, on the drift and diffusion terms, on the Cauchy data, and on the spectral measure associated with the noise, such that the Cauchy problem admits a unique function-valued mild solution in the sense of Da Prato and Zabczyc.