论文标题
保留操作员偏斜产品的局部光谱子空间的地图
Maps preserving the local spectral subspace of skew-product of operators
论文作者
论文摘要
令$ b(h)$为无限尺寸复杂的希尔伯特·太空$ h $上的所有有界线性操作员的代数。对于$ t \ in b(h)$和$λ\ in \ mathbb {c} $,令$ h_ {t}(\ {λ\})$表示与$ \ {λ\ \} $相关的$ t $的本地频谱子空间。我们证明,如果$φ:b(h)\ rightarrow b(h)$是一个加性地图,以使其范围最多包含所有排名最多的运算符,并且满足$ h_ {φ(t)φ(s)^{\ ast}}}}}}}}}}(\ {λ\\}) $ t,s \ in b(h)$和$λ\在\ mathbb {c} $中,然后在$ b(h)$中存在一个单一操作员$ v $和一个非零的标量$μ$,使得$φ(t)=μtv^{\ ast} $ in B(h)$ in b(h)$。我们还显示,如果$φ_{1} $和$φ_{2} $是$ b(h)$的加性映射到$ b(h)$中,以使他们的范围最多包含所有排名的所有操作员,并且满足$ h_ {φ_{φ_{1}(1}(t)(t)(t)φ_{2}}(s) h_ {ts^{\ ast}}(\ {λ\})$$用于b(h)$中的所有$ t,s \ in \ mathbb {c} $ in b(h)$中。然后$φ_{2}(i)^{\ ast} $是可逆的,$φ_{1}(t)= t(φ_{2}(i)^{\ ast})^{\ ast})^{ - 1} $和$φ____________________{2}(t)= m $ { b(h)$。
Let $B(H)$ be the algebra of all bounded linear operators on an infinite-dimensional complex Hilbert space $H$. For $T \in B(H)$ and $λ\in \mathbb{C}$, let $H_{T}(\{λ\})$ denotes the local spectral subspace of $T$ associated with $\{λ\}$. We prove that if $φ:B(H)\rightarrow B(H)$ be an additive map such that its range contains all operators of rank at most two and satisfies $$H_{φ(T)φ(S)^{\ast}}(\{λ\})= H_{TS^{\ast}}(\{λ\})$$ for all $T, S \in B(H)$ and $λ\in \mathbb{C}$, then there exist a unitary operator $V$ in $B(H)$ and a nonzero scalar $μ$ such that $φ(T) = μTV^{\ast}$ for all $T \in B(H)$. We also show if $φ_{1}$ and $φ_{2}$ be additive maps from $B(H)$ into $B(H)$ such that their ranges contain all operators of rank at most two and satisfies $$H_{φ_{1}(T)φ_{2}(S)^{\ast}}(\{λ\})= H_{TS^{\ast}}(\{λ\})$$ for all $T, S \in B(H)$ and $λ\in \mathbb{C}$. Then $φ_{2}(I)^{\ast}$ is invertible, and $φ_{1}(T) = T(φ_{2}(I)^{\ast})^{-1}$ and $φ_{2}(T) =φ_{2}(I)^{\ast}T$ for all $T \in B(H)$.