论文标题

铁磁锯齿链的量子自旋螺旋基态

Quantum spin spiral ground state of the ferrimagnetic sawtooth chain

论文作者

Rausch, Roman, Peschke, Matthias, Plorin, Cassian, Schnack, Jürgen, Karrasch, Christoph

论文摘要

具有混合铁磁链的锯齿链的铁磁相,最近的近纽布相互作用$ j $和反铁磁性的下一个nearest-neighbour互动$ j'$(在同型Heisenberg型号中)以前被描述为具有敏感顺序的阶段。在本文中,我们证明了该系统实际上表现出不均等的量子自旋螺旋。即使基态在本地旋转期望$ \ avg {\ vec {s} _i} $方面是不变的,也可以通过连接的自旋旋转相关性检测到螺旋$ \ avg {\ vec {s} _i \ cdot \ vec {s} _J} - \ avg {\ vec {s} _i} \ cdot \ cdot \ avg {\ vec {\ vec {s}}它具有长长的波长,它以$ J'$的形式生长,并且很快超过了数值模拟中通常使用的有限系统尺寸。因此,忠实的待遇需要用于大型周期系统的最新模拟。 在这项工作中,我们能够使用密度 - 矩阵肾上腺素化组(DMRG)准确地处理高达$ L = 400 $站点(200个单位单元)。利用SU(2)对称性使我们能够直接计算给定总自旋的最低能量状态。我们的结果通过变异均匀矩阵乘积状态(VUMP)计算来证实,这些计算直接以较低精度成本起作用的热力学极限。

The ferrimagnetic phase of the sawtooth chain with mixed ferromagnetic nearest-neighbour interactions $J$ and antiferromagnetic next-nearest-neighbour interactions $J'$ (within the isotropic Heisenberg model) was previously characterized as a phase with commensurate order. In this paper, we demonstrate that the system in fact exhibits an incommensurate quantum spin spiral. Even though the ground state is translationally invariant in terms of the local spin expectations $\avg{\vec{S}_i}$, the spiral can be detected via the connected spin-spin correlations $\avg{\vec{S}_i\cdot\vec{S}_j}-\avg{\vec{S}_i}\cdot\avg{\vec{S}_j}$ between the apical spins. It has a long wavelength that grows with $J'$ and that soon exceeds finite-system sizes typically employed in numerical simulations. A faithful treatment thus requires the use of state-of-the-art simulations for large, periodic systems. In this work, we are able to accurately treat up to $L=400$ sites (200 unit cells) with periodic boundary conditions using the density-matrix renormaliztion group (DMRG). Exploiting the SU(2) symmetry allows us to directly compute the lowest-energy state for a given total spin. Our results are corroborated by variational uniform matrix product state (VUMPS) calculations, which work directly in the thermodynamic limit at the cost of a lower accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源