论文标题
快速定量磁化转移成像:利用杂种状态和广义BLOCH模型
Rapid quantitative magnetization transfer imaging: utilizing the hybrid state and the generalized Bloch model
论文作者
论文摘要
目的:探索有效的编码方案,以进行定量磁化转移(QMT)成像,模型上的限制很少 理论和方法:我们在Bloch-McConnell方程中结合了两个最近提出的模型:自由旋转池的动力学局限于混合状态,并通过广义Bloch模型描述了半固体自旋池的动力学。我们通过数值优化了射频脉冲的翻转角度和持续时间,以增强三个QMT参数的编码,同时考虑2池模型的所有8个参数。我们使用3D径向koosh-ball轨迹沿此旋转动力学对每个时间框架进行了稀疏的样品,并使用子空间建模重建数据,并使用用于计算效率的神经网络拟合QMT模型。 结果:我们从12.6分钟的扫描中提取了整个大脑的QMT参数图,有效分辨率为1.24mm。在多发性硬化症患者的病变中,我们观察到半固体自旋池的大小降低,放松时间更长,与以前 结论:混合状态的编码功率与正则图像重建结合,并且广义BLOCH模型的准确性为有效的定量磁化转移成像提供了极好的基础,并且对模型参数的约束很少。
Purpose: To explore efficient encoding schemes for quantitative magnetization transfer (qMT) imaging with few constraints on model Theory and Methods: We combine two recently proposed models in a Bloch-McConnell equation: the dynamics of the free spin pool are confined to the hybrid state, and the dynamics of the semi-solid spin pool are described by the generalized Bloch model. We numerically optimize the flip angles and durations of a train of radio frequency pulses to enhance the encoding of three qMT parameters while accounting for all 8 parameters of the 2-pool model. We sparsely sample each time frame along this spin dynamics with a 3D radial koosh-ball trajectory, reconstruct the data with subspace modeling, and fit the qMT model with a neural network for computational efficiency. Results: We extracted qMT parameter maps of the whole brain with an effective resolution of 1.24mm from a 12.6-minute scan. In lesions of multiple sclerosis subjects, we observe a decreased size of the semi-solid spin pool and longer relaxation times, consistent with previous Conclusion: The encoding power of the hybrid state, combined with regularized image reconstruction, and the accuracy of the generalized Bloch model provide an excellent basis for efficient quantitative magnetization transfer imaging with few constraints on model parameters.