论文标题

校准感知的转透,以进行变分量子优化

Calibration-Aware Transpilation for Variational Quantum Optimization

论文作者

Ji, Yanjun, Brandhofer, Sebastian, Polian, Ilia

论文摘要

当今的嘈杂的中间尺度量子(NISQ)计算机仅支持有限的可用量子门和有限的连接性。因此,必须对量子算法进行转移,以便在给定的NISQ计算机上执行。转移是一个复杂且计算重的过程。此外,NISQ计算机受噪声的影响,随着时间的流逝而变化,定期校准提供了相关的错误率,应在转卸过程中考虑。在NISQ平台上形成一个主要计算的变异算法,产生了许多相似但不相同的量子``Ansatz''电路。在这项工作中,我们提出了一种在潜在变化错误率下针对变异算法优化的转溶方法。我们将转移分为三个步骤:(1)噪声 - 诺瓦尔和计算重量的预言; (2)快速噪音吸引匹配; (3)快速分解,然后进行启发式优化。对于在恒定错误率下的变异算法的完整运行,只需要为每个新的ANSATZ电路执行步骤(3)。仅当自计算开始以来,通过校准报告的错误率发生了很大变化,才需要步骤(2)。整个运行中,最昂贵的步骤(1)仅执行一次。当变分算法适应其执行因素来改变错误率时,此分布有助于增量,校准感知的转溶。 IBM量子计算机的实验结果表明,通过校准感知的转介获得了低潜伏期和可靠的结果。

Today's Noisy Intermediate-Scale Quantum (NISQ) computers support only limited sets of available quantum gates and restricted connectivity. Therefore, quantum algorithms must be transpiled in order to become executable on a given NISQ computer; transpilation is a complex and computationally heavy process. Moreover, NISQ computers are affected by noise that changes over time, and periodic calibration provides relevant error rates that should be considered during transpilation. Variational algorithms, which form one main class of computations on NISQ platforms, produce a number of similar yet not identical quantum ``ansatz'' circuits. In this work, we present a transpilation methodology optimized for variational algorithms under potentially changing error rates. We divide transpilation into three steps: (1) noise-unaware and computationally heavy pre-transpilation; (2) fast noise-aware matching; and (3) fast decomposition followed by heuristic optimization. For a complete run of a variational algorithm under constant error rates, only step (3) needs to be executed for each new ansatz circuit. Step (2) is required only if the error rates reported by calibration have changed significantly since the beginning of the computation. The most expensive Step (1) is executed only once for the whole run. This distribution is helpful for incremental, calibration-aware transpilation when the variational algorithm adapts its own execution to changing error rates. Experimental results on IBM's quantum computer show the low latency and robust results obtained by calibration-aware transpilation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源