论文标题
Loschmidt中的奇异性回声
Singularities in the Loschmidt echo of quenched topological superconductors
论文作者
论文摘要
我们在淬灭的二维$ p $ - 波拓扑超导体中研究loschmidt Echo。我们发现,如果将该超导体从临界点淬灭,将其拓扑和非亲动阶段分隔为两个间隙阶段中的任何一个,则其loschmidt Echo具有奇异性,而在loschmidt的第二个衍生物中,loschmidt Echo逐步回荡的时间会定期出现。相反,我们对$ s $ - 波浪超导体的争论在其loschmidt Echo中没有奇异性,而不管淬火何种。我们还证明,常规平均场理论计算经典回声而不是其量子对应物,并显示应如何对其进行修改以捕获完整的量子loschmidt回声。
We study the Loschmidt echo in the quenched two-dimensional $p$-wave topological superconductor. We find that if this superconductor is quenched out of the critical point separating its topological and non-topological phases into either of the two gapful phases, its Loschmidt echo features singularities occurring periodically in time where the second derivative of the Loschmidt echo over time diverges logarithmically. Conversely, we give arguments towards $s$-wave superconductors not having singularities in their Loschmidt echo regardless of the quench. We also demonstrate that the conventional mean field theory calculates classical echo instead of its quantum counterpart, and show how it should be modified to capture the full quantum Loschmidt echo.