论文标题

RIS辅助MIMO通信系统:基于模型与自动编码器方法

RIS-Assisted MIMO Communication Systems: Model-based versus Autoencoder Approaches

论文作者

Le, Ha An, Van Chien, Trinh, Nguyen, Van Duc, Choi, Wan

论文摘要

本文考虑了可重构的智能表面(RIS)辅助点对点多输入多输出(MIMO)通信系统,其中发射器通过RIS与接收器进行通信。基于降低位错误率(BER)并增强通信可靠性的主要目标,我们研究了不同的基于模型和数据驱动的方法(自动编码器)方法。特别是,我们考虑了一种基于模型的方法,该方法优化了主动和被动优化变量。我们进一步提出了一个新颖的端到端数据驱动框架,该框架利用了机器学习的最新进展。为传统信号处理模块提供的神经网络与通道效应共同训练,以最大程度地减少位误差检测。数值结果表明,所提出的数据驱动方法可以学会通过不同的通道实现来编码传输信号。此外,与其他最先进的基准相比,数据驱动的方法不仅可以为BER性能带来可观的增长,而且还可以确保当完美的频道信息不可用时的性能。

This paper considers reconfigurable intelligent surface (RIS)-assisted point-to-point multiple-input multiple-output (MIMO) communication systems, where a transmitter communicates with a receiver through an RIS. Based on the main target of reducing the bit error rate (BER) and therefore enhancing the communication reliability, we study different model-based and data-driven (autoencoder) approaches. In particular, we consider a model-based approach that optimizes both active and passive optimization variables. We further propose a novel end-to-end data-driven framework, which leverages the recent advances in machine learning. The neural networks presented for conventional signal processing modules are jointly trained with the channel effects to minimize the bit error detection. Numerical results demonstrate that the proposed data-driven approach can learn to encode the transmitted signal via different channel realizations dynamically. In addition, the data-driven approach not only offers a significant gain in the BER performance compared to the other state-of-the-art benchmarks but also guarantees the performance when perfect channel information is unavailable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源