论文标题

通过高阶分解了解影响最大化

Understanding Influence Maximization via Higher-Order Decomposition

论文作者

Zhang, Zonghan, Chen, Zhiqian

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Given its vast application on online social networks, Influence Maximization (IM) has garnered considerable attention over the last couple of decades. Due to the intricacy of IM, most current research concentrates on estimating the first-order contribution of the nodes to select a seed set, disregarding the higher-order interplay between different seeds. Consequently, the actual influence spread frequently deviates from expectations, and it remains unclear how the seed set quantitatively contributes to this deviation. To address this deficiency, this work dissects the influence exerted on individual seeds and their higher-order interactions utilizing the Sobol index, a variance-based sensitivity analysis. To adapt to IM contexts, seed selection is phrased as binary variables and split into distributions of varying orders. Based on our analysis with various Sobol indices, an IM algorithm dubbed SIM is proposed to improve the performance of current IM algorithms by over-selecting nodes followed by strategic pruning. A case study is carried out to demonstrate that the explanation of the impact effect can dependably identify the key higher-order interactions among seeds. SIM is empirically proved to be superior in effectiveness and competitive in efficiency by experiments on synthetic and real-world graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源