论文标题

通过社交网络中的边缘建议最大化公平内容传播

Maximizing Fair Content Spread via Edge Suggestion in Social Networks

论文作者

Swift, Ian P., Ebrahimi, Sana, Nova, Azade, Asudeh, Abolfazl

论文摘要

内容传播不平等是在线社交网络中的潜在不公平问题,对少数群体产生了不同的影响。在本文中,我们将友谊建议(在社交网络平台中的共同特征)视为实现公平内容的机会。特别是,我们建议提出一部分潜在边缘(目前不存在于网络中,但可能被接受),以最大程度地利用内容,同时达到公平。我们的提案没有重新设计现有系统,而是在现有的友谊建议组件之上建立了公平包装。 我们证明了问题是NP硬化,除非p = np,否则在多项式时间内不适合焦虑。因此,允许放松公平性约束,我们提出了一种基于LP - 放松和随机舍入的算法,并在公平性和内容扩展上具有固定的近似值。我们提供多种优化,进一步改善了实践中算法的性能。此外,我们提出了一种动态添加节点子集的可扩展算法,该算法通过迭代采样选择,并解决了与这些节点相对应的较小问题。除了理论分析外,我们还对真实和合成数据集进行了全面的实验。在不同的环境中,我们的算法发现了与零不公平的解决方案,同时显着增加了内容的扩展。我们的可扩展算法可以在一台机器上使用50万个节点处理图形,从而将不公平性降低到0.0004左右,同时提升内容扩散43%。

Content spread inequity is a potential unfairness issue in online social networks, disparately impacting minority groups. In this paper, we view friendship suggestion, a common feature in social network platforms, as an opportunity to achieve an equitable spread of content. In particular, we propose to suggest a subset of potential edges (currently not existing in the network but likely to be accepted) that maximizes content spread while achieving fairness. Instead of re-engineering the existing systems, our proposal builds a fairness wrapper on top of the existing friendship suggestion components. We prove the problem is NP-hard and inapproximable in polynomial time unless P = NP. Therefore, allowing relaxation of the fairness constraint, we propose an algorithm based on LP-relaxation and randomized rounding with fixed approximation ratios on fairness and content spread. We provide multiple optimizations, further improving the performance of our algorithm in practice. Besides, we propose a scalable algorithm that dynamically adds subsets of nodes, chosen via iterative sampling, and solves smaller problems corresponding to these nodes. Besides theoretical analysis, we conduct comprehensive experiments on real and synthetic data sets. Across different settings, our algorithms found solutions with nearzero unfairness while significantly increasing the content spread. Our scalable algorithm could process a graph with half a million nodes on a single machine, reducing the unfairness to around 0.0004 while lifting content spread by 43%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源