论文标题

估计沙普利价值特征属性的算法

Algorithms to estimate Shapley value feature attributions

论文作者

Chen, Hugh, Covert, Ian C., Lundberg, Scott M., Lee, Su-In

论文摘要

基于Shapley值的功能归因在解释机器学习模型中很受欢迎。但是,从理论和计算的角度来看,它们的估计是复杂的。我们将这种复杂性分解为两个因素:(1)〜删除特征信息的方法,以及(2)〜可拖动的估计策略。这两个因素提供了一种天然镜头,我们可以更好地理解和比较24种不同的算法。基于各种特征删除方法,我们描述了shapley值的多种特征特征属性和计算每个类型的方法。然后,基于可处理的估计策略,我们表征了两个不同的方法家族:模型 - 敏捷和模型特定近似值。对于模型不合时宜的近似值,我们基准了广泛的估计方法,并将其与沙普利价值的替代性但等效的特征相关联。对于特定于模型的近似值,我们阐明了对线性,树和深模型的障碍性至关重要的假设。最后,我们确定了文献中的差距以及有希望的未来研究方向。

Feature attributions based on the Shapley value are popular for explaining machine learning models; however, their estimation is complex from both a theoretical and computational standpoint. We disentangle this complexity into two factors: (1)~the approach to removing feature information, and (2)~the tractable estimation strategy. These two factors provide a natural lens through which we can better understand and compare 24 distinct algorithms. Based on the various feature removal approaches, we describe the multiple types of Shapley value feature attributions and methods to calculate each one. Then, based on the tractable estimation strategies, we characterize two distinct families of approaches: model-agnostic and model-specific approximations. For the model-agnostic approximations, we benchmark a wide class of estimation approaches and tie them to alternative yet equivalent characterizations of the Shapley value. For the model-specific approximations, we clarify the assumptions crucial to each method's tractability for linear, tree, and deep models. Finally, we identify gaps in the literature and promising future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源