论文标题
定向多功能的固定参数易处理性,三个终端对通过切割的尺寸进行了参数:双宽度符合流程度
Fixed-parameter tractability of Directed Multicut with three terminal pairs parameterized by the size of the cutset: twin-width meets flow-augmentation
论文作者
论文摘要
我们显示了三个终端对(带有随机算法)的定向多次问题的固定参数障碍性。这个问题给定有向图的$ g $,成对的顶点(称为端子)$(s_1,t_1)$,$(s_2,t_2)$和$(s_3,t_3)$和一个整数$ k $,要求在所有$ k $ g $ $ g $ s_ $ s_1 $ s_1 $ s_1 $ s_1 $ s_1 $ s_1 $ s_11的所有in-s_11t in-sect in-sect in-sect中。 $ S_2T_2 $ - Paths和所有$ S_3T_3 $ - Paths。自Chitnis,Cygan,Hajiaghayi和Marx证明,该病例的参数化复杂性已开放,这证明是Soda 2012上2端对案例的固定参数障碍,而Pilipczuk和Wahlström证明了SODA 2016年4-末端PAIRT案例的w [1] - w [1] - hardtes。 在技术方面,我们在参数化算法中使用了两个最新的发展。使用定向流动效能的技术[Kim,Kratsch,Pilipczuk,Wahlström,STOC 2022]我们将问题抛弃为CSP问题,几乎没有变量和限制因素对大量有序的域进行。我们观察到,这一问题可以反过来构成FO模型的模型来确定型号的结构,而这些结构是一部分,其中包括一些0-1位的结构。 We look at this problem through the lenses of twin-width, a recently introduced structural parameter [Bonnet, Kim, Thomassé, Watrigant, FOCS 2020]: By a recent characterization [Bonnet, Giocanti, Ossona de Mendes, Simon, Thomassé, Toruńczyk, STOC 2022] the said FO model-checking task can be done in FPT time if the said matrices have有界网格等级。为了完成证明,我们显示了一个无关的顶点规则:如果所述编码中的任何矩阵具有较大的网格小调,则可以将与``网格小点''中的“中间”框相对应的顶点无关,而无关 - 不包含在试点的解决方案中 - 因此减少了。
We show fixed-parameter tractability of the Directed Multicut problem with three terminal pairs (with a randomized algorithm). This problem, given a directed graph $G$, pairs of vertices (called terminals) $(s_1,t_1)$, $(s_2,t_2)$, and $(s_3,t_3)$, and an integer $k$, asks to find a set of at most $k$ non-terminal vertices in $G$ that intersect all $s_1t_1$-paths, all $s_2t_2$-paths, and all $s_3t_3$-paths. The parameterized complexity of this case has been open since Chitnis, Cygan, Hajiaghayi, and Marx proved fixed-parameter tractability of the 2-terminal-pairs case at SODA 2012, and Pilipczuk and Wahlström proved the W[1]-hardness of the 4-terminal-pairs case at SODA 2016. On the technical side, we use two recent developments in parameterized algorithms. Using the technique of directed flow-augmentation [Kim, Kratsch, Pilipczuk, Wahlström, STOC 2022] we cast the problem as a CSP problem with few variables and constraints over a large ordered domain.We observe that this problem can be in turn encoded as an FO model-checking task over a structure consisting of a few 0-1 matrices. We look at this problem through the lenses of twin-width, a recently introduced structural parameter [Bonnet, Kim, Thomassé, Watrigant, FOCS 2020]: By a recent characterization [Bonnet, Giocanti, Ossona de Mendes, Simon, Thomassé, Toruńczyk, STOC 2022] the said FO model-checking task can be done in FPT time if the said matrices have bounded grid rank. To complete the proof, we show an irrelevant vertex rule: If any of the matrices in the said encoding has a large grid minor, a vertex corresponding to the ``middle'' box in the grid minor can be proclaimed irrelevant -- not contained in the sought solution -- and thus reduced.