论文标题
在重塑波导歧管上的立方非线性schrödinger方程的修饰散射
Modified Scattering of Cubic Nonlinear Schrödinger Equation on Rescaled Waveguide Manifolds
论文作者
论文摘要
我们使用修改的散射理论来证明,在重新制定的波导歧管上对立方非线性schrödinger方程的小型数据解决方案,$ \ mathbb {r} \ times \ times \ times \ mathbb {t}^d $ for $ d \ geq 2 $,sobolev norms and Sobolev Norms and Sobolev Norms us uss and Instance uss uss and Instance uss and Instance uss and Instance uss and Instance uss and Instance uss and Instance。
We use modified scattering theory to demonstrate that small-data solutions to the cubic nonlinear Schrödinger equation on rescaled waveguide manifolds, $\mathbb{R} \times \mathbb{T}^d$ for $d\geq 2$, demonstrate boundedness of Sobolev norms as well as weak instability.