论文标题

储能最先进的市场模型

Energy Storage State-of-Charge Market Model

论文作者

Zheng, Ningkun, Qin, Xin, Wu, Di, Murtaugh, Gabe, Xu, Bolun

论文摘要

本文介绍并合理化了一种新的模型,用于批评和清除批发能源市场的存储资源。该模型中的电荷和放电竞标取决于存储最新电荷(SOC)。在这种情况下,存储参与者为每个SOC领域提交不同的投标。系统操作员监视存储SOC并在市场清算中相应地更新其出价。结合使用动态编程的最佳竞标设计算法,我们的论文表明,与现有的基于基于功率的招标模型相比,SOC细分市场模型可提供更准确的储能机会成本。新模型还捕获了能量存储的固有的依赖SOC的操作特征。我们将SOC细分市场模型基准根据价格摄入量和价格影响者模拟中现有的单段模型进行基准测试。仿真结果表明,与现有的基于电力的招标模型相比,在价格工具案例研究中,提出的模型将利润提高了10-56%。该模型还将从存储的总成本降低约5%,并有助于减少价格影响者案例研究中的价格波动。

This paper introduces and rationalizes a new model for bidding and clearing energy storage resources in wholesale energy markets. Charge and discharge bids in this model depend on the storage state-of-charge (SoC). In this setting, storage participants submit different bids for each SoC segment. The system operator monitors the storage SoC and updates their bids accordingly in market clearings. Combined with an optimal bidding design algorithm using dynamic programming, our paper shows that the SoC segment market model provides more accurate representations of the opportunity costs of energy storage compared to existing power-based bidding models. The new model also captures the inherent SoC-dependent operational characteristics of energy storage. We benchmark the SoC segment market model against an existing single-segment model in price-taker and price-influencer simulations. The simulation results show that compared to the existing power-based bidding model, the proposed model improves profits by 10-56% in the price-taker case study; the model also improves total system cost reduction from storage by around 5%, and helps reduce price volatilities in the price-influencer case study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源