论文标题
Fefferman-Graham扩展和复杂黑洞解剖结构的收敛性
Convergence of the Fefferman-Graham expansion and complex black hole anatomy
论文作者
论文摘要
给定一组洛伦兹全息QFT的来源和单点功能数据,Fefferman-Graham扩展是否会融合?如果这样做,是什么设定了收敛的半径,以及可以使用此扩展来重建时空的内部?作为回答这些问题的一步,我们考虑了实际的分析CFT数据,在没有对数的情况下,半径是由通过分析延续Fefferman-Graham径向坐标来达到的复杂度量的奇点。随着复杂径向平面的起源的共形边界,真正的洛伦兹submanifolds以径向射线和圆形的圆圈和以原点为中心的圆圈构建的分段路径。这允许通过最大扩展黑洞空位的量规不变奇异性来识别Fefferman-Graham度量函数的奇异性,从而阐明了在这种情况下收敛半径有限的物理原因。我们发现具有空间奇异性的黑色孔可以给出等于地平线半径的收敛半径,但是对于及时奇异性的黑洞,半径较小。我们证明,有限的收敛半径并不一定要遵循事件范围的存在,时空的奇异性,也不一定来自Fefferman-Graham仪表的腐蚀,通过提供具有无限趋势半径的空间示例,即包含此类特征的无限半径。
Given a set of sources and one-point function data for a Lorentzian holographic QFT, does the Fefferman-Graham expansion converge? If it does, what sets the radius of convergence, and how much of the interior of the spacetime can be reconstructed using this expansion? As a step towards answering these questions we consider real analytic CFT data, where in the absence of logarithms, the radius is set by singularities of the complex metric reached by analytically continuing the Fefferman-Graham radial coordinate. With the conformal boundary at the origin of the complex radial plane, real Lorentzian submanifolds appear as piecewise paths built from radial rays and arcs of circles centred on the origin. This allows singularities of Fefferman-Graham metric functions to be identified with gauge-invariant singularities of maximally extended black hole spacetimes, thereby clarifying the physical cause of the limited radius of convergence in such cases. We find black holes with spacelike singularities can give a radius of convergence equal to the horizon radius, however for black holes with timelike singularities the radius is smaller. We prove that a finite radius of convergence does not necessarily follow from the existence of an event horizon, a spacetime singularity, nor from caustics of the Fefferman-Graham gauge, by providing explicit examples of spacetimes with an infinite radius of convergence which contain such features.