论文标题
在Orlicz-Sobolev空间中的磁性Kirchhoff方程的解决方案的存在和多样性
Existence and multiplicity of solutions to magnetic Kirchhoff equations in Orlicz-Sobolev spaces
论文作者
论文摘要
在本文中,我们研究了磁性分数Orlicz-Sobolev空间中一般类型的Kirchhoff方程的弱解决方案的存在和多样性。具体而言,我们呼吁关键点理论证明在所谓的Ambrosetti-Rabinowitz条件下存在非平凡解决方案。我们还指出了地面解决方案的存在。此外,还提供了产生无界解决方案序列的多样性结果。最后,我们在Orlicz空间框架中表达的弱型Ambrosetti-Rabinowitz条件下显示了存在。
In this paper, we study the existence and multiplicity of weak solutions to a general type of Kirchhoff equations in magnetic fractional Orlicz-Sobolev spaces. Specifically, we appeal to Critical Point Theory to prove the existence of non-trivial solutions under the so-called Ambrosetti-Rabinowitz condition. We also state the existence of ground-state solutions. Moreover, multiplicity results which yield the existence of an unbounded sequence of solutions are also provided. Finally, we show existence under a weak-type Ambrosetti-Rabinowitz condition formulated in the framework of Orlicz spaces.