论文标题
用像素的语言建模
Language Modelling with Pixels
论文作者
论文摘要
语言模型是通过有限的输入集定义的,当我们尝试扩展支持语言的数量时,该输入会产生词汇瓶颈。解决此瓶颈会导致在嵌入矩阵中可以表示的与输出层中的计算问题之间的权衡。本文介绍了基于像素的语言编码器Pixel,这两个问题都没有遭受这些问题的影响。 Pixel是一种验证的语言模型,它以图像为图像,可以根据拼字法相似性或像素的共激活来传输跨语言的表示。训练Pixel可以重建蒙版贴片的像素,而不是预测令牌上的分布。我们在与BERT相同的英语数据上预告了8600万参数像素模型,并对包括各种非拉丁语脚本在内的类型上多样化的语言中的句法和语义任务进行了评估。我们发现,Pixel在预读取数据中找不到的脚本上的句法和语义处理任务大大优于BERT,但是使用Pixel在使用拉丁脚本时比BERT稍弱。此外,我们发现像素比BERT对拼字攻击和语言代码开关更强大,进一步证实了用像素建模语言的好处。
Language models are defined over a finite set of inputs, which creates a vocabulary bottleneck when we attempt to scale the number of supported languages. Tackling this bottleneck results in a trade-off between what can be represented in the embedding matrix and computational issues in the output layer. This paper introduces PIXEL, the Pixel-based Encoder of Language, which suffers from neither of these issues. PIXEL is a pretrained language model that renders text as images, making it possible to transfer representations across languages based on orthographic similarity or the co-activation of pixels. PIXEL is trained to reconstruct the pixels of masked patches instead of predicting a distribution over tokens. We pretrain the 86M parameter PIXEL model on the same English data as BERT and evaluate on syntactic and semantic tasks in typologically diverse languages, including various non-Latin scripts. We find that PIXEL substantially outperforms BERT on syntactic and semantic processing tasks on scripts that are not found in the pretraining data, but PIXEL is slightly weaker than BERT when working with Latin scripts. Furthermore, we find that PIXEL is more robust than BERT to orthographic attacks and linguistic code-switching, further confirming the benefits of modelling language with pixels.