论文标题

网络范围的飞行延迟预测的时空传播学习

Spatiotemporal Propagation Learning for Network-Wide Flight Delay Prediction

论文作者

Wu, Yuankai, Yang, Hongyu, Lin, Yi, Liu, Hong

论文摘要

揭开多个机场的延迟传播机制的神秘面纱是对确切且可解释的延迟预测至关重要的,这对于所有航空业利益相关者而言,这在决策过程中至关重要。主要挑战在于有效利用与延迟传播有关的时空依赖性和外源性因素。但是,以前的作品仅考虑有限的时空模式,其因素很少。为了促进延迟预测的更全面的传播建模,我们提出了时空传播网络(STPN),这是一种时空可分开的图形卷积网络,该网络在时空依赖性捕获中是新颖的。从空间关系建模的方面来看,我们提出了一个多绘制卷积模型,考虑地理位置近距离和航空公司时间表。从时间依赖性捕获的方面,我们提出了一种多头的自我发起的机制,可以端对端学习,并明确地推定延迟时间序列的多种时间依赖性。我们表明,关节空间和时间学习模型产生了Kronecker产品的总和,这是由于时空依赖性依赖于几个时空和时间邻接矩阵的总和。通过这种方式,STPN允许在空间和时间因素的串联来建模延迟传播。此外,将挤压和激发模块添加到STPN的每一层,以增强有意义的时空特征。为此,我们在大规模机场网络中将STPN应用于多步进和出发延迟预测。为了验证我们的模型的有效性,我们尝试了两个现实世界中的延迟数据集,包括美国和中国航班延迟;我们表明,STPN的表现优于最先进的方法。此外,STPN产生的反事实表明,它学习了可解释的延迟传播模式。

Demystifying the delay propagation mechanisms among multiple airports is fundamental to precise and interpretable delay prediction, which is crucial during decision-making for all aviation industry stakeholders. The principal challenge lies in effectively leveraging the spatiotemporal dependencies and exogenous factors related to the delay propagation. However, previous works only consider limited spatiotemporal patterns with few factors. To promote more comprehensive propagation modeling for delay prediction, we propose SpatioTemporal Propagation Network (STPN), a space-time separable graph convolutional network, which is novel in spatiotemporal dependency capturing. From the aspect of spatial relation modeling, we propose a multi-graph convolution model considering both geographic proximity and airline schedule. From the aspect of temporal dependency capturing, we propose a multi-head self-attentional mechanism that can be learned end-to-end and explicitly reason multiple kinds of temporal dependency of delay time series. We show that the joint spatial and temporal learning models yield a sum of the Kronecker product, which factors the spatiotemporal dependence into the sum of several spatial and temporal adjacency matrices. By this means, STPN allows cross-talk of spatial and temporal factors for modeling delay propagation. Furthermore, a squeeze and excitation module is added to each layer of STPN to boost meaningful spatiotemporal features. To this end, we apply STPN to multi-step ahead arrival and departure delay prediction in large-scale airport networks. To validate the effectiveness of our model, we experiment with two real-world delay datasets, including U.S and China flight delays; and we show that STPN outperforms state-of-the-art methods. In addition, counterfactuals produced by STPN show that it learns explainable delay propagation patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源