论文标题
麦基恩 - vlasov随机微分方程的双环重要性抽样
Double-Loop Importance Sampling for McKean--Vlasov Stochastic Differential Equation
论文作者
论文摘要
本文研究了Monte Carlo(MC)方法,以估计与$ D $二维的McKean-Vlasov随机差分方程(MV-SDE)相关的罕见事件的概率。 MV-SDE通常使用随机交互的$ p $粒子系统近似,该系统是一组$ p $耦合$ d $ d $二维随机微分方程(SDES)。重要性采样(IS)是降低稀有事实概率的MC估计值的高相对方差的常见技术。我们首先得出零变化的是使用随机最佳控制理论改变利益量的度量。但是,当将这种度量的更改应用于随机粒子系统时,它会产生$ p \ times d $二维部分差分控制方程(PDE),该方程在计算上的求解价格很高。为了解决这个问题,我们使用[Dos Reis等人,2023年]中引入的解耦方法,生成$ d $二维控制PDE,用于脱钩SDE的零变量估算器。基于这种方法,我们开发了一个计算高效的双环MC(DLMC)估计器。我们对DLMC估计器进行了全面的数值错误和工作分析。结果,我们显示$ \ Mathcal {O}(\ Mathrm {tol} _ {\ Mathrm {\ MathRM {r}}^{ - 4} $的最佳复杂性,以实现规定的相对误差容忍度$ \ MATHRM {TOL} _ {随后,我们提出了一种自适应DLMC方法与数值估计稀有事件概率的结合,与在缺少IS的情况下,实现给定的$ \ MathRM {tol} _ {\ Mathrm {r}} $所需的相对方差和计算运行时间。数值实验是从统计物理学的库拉莫托模型上进行的。
This paper investigates Monte Carlo (MC) methods to estimate probabilities of rare events associated with solutions to the $d$-dimensional McKean-Vlasov stochastic differential equation (MV-SDE). MV-SDEs are usually approximated using a stochastic interacting $P$-particle system, which is a set of $P$ coupled $d$-dimensional stochastic differential equations (SDEs). Importance sampling (IS) is a common technique for reducing high relative variance of MC estimators of rare-event probabilities. We first derive a zero-variance IS change of measure for the quantity of interest by using stochastic optimal control theory. However, when this change of measure is applied to stochastic particle systems, it yields a $P \times d$-dimensional partial differential control equation (PDE), which is computationally expensive to solve. To address this issue, we use the decoupling approach introduced in [dos Reis et al., 2023], generating a $d$-dimensional control PDE for a zero-variance estimator of the decoupled SDE. Based on this approach, we develop a computationally efficient double loop MC (DLMC) estimator. We conduct a comprehensive numerical error and work analysis of the DLMC estimator. As a result, we show optimal complexity of $\mathcal{O}(\mathrm{TOL}_{\mathrm{r}}^{-4})$ with a significantly reduced constant to achieve a prescribed relative error tolerance $\mathrm{TOL}_{\mathrm{r}}$. Subsequently, we propose an adaptive DLMC method combined with IS to numerically estimate rare-event probabilities, substantially reducing relative variance and computational runtimes required to achieve a given $\mathrm{TOL}_{\mathrm{r}}$ compared with standard MC estimators in the absence of IS. Numerical experiments are performed on the Kuramoto model from statistical physics.