论文标题
部分可观测时空混沌系统的无模型预测
Respiration driven CO2 pulses dominate Australia's flux variability
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The Australian continent contributes substantially to the year-to-year variability of the global terrestrial carbon dioxide (CO2) sink. However, the scarcity of in-situ observations in remote areas prevents deciphering the processes that force the CO2 flux variability. Here, examining atmospheric CO2 measurements from satellites in the period 2009-2018, we find recurrent end-of-dry-season CO2 pulses over the Australian continent. These pulses largely control the year-to-year variability of Australia's CO2 balance, due to 2-3 times higher seasonal variations compared to previous top-down inversions and bottom-up estimates. The CO2 pulses occur shortly after the onset of rainfall and are driven by enhanced soil respiration preceding photosynthetic uptake in Australia's semi-arid regions. The suggested continental-scale relevance of soil rewetting processes has large implications for our understanding and modelling of global climate-carbon cycle feedbacks.