论文标题

部分可观测时空混沌系统的无模型预测

Further contributions on the outer multiset dimension of graphs

论文作者

Klavzar, Sandi, Kuziak, Dorota, Yero, Ismael G.

论文摘要

图$ g $的外部多尺寸$ {\ rm dim} _ {\ rm ms}(g)$是最小的一组顶点的基数,它们通过使用该集合的多距离唯一地识别了此集合之外的所有顶点。证明$ {\ rm dim} _ {\ rm ms}(g)= n(g) - 1 $,仅当$ g $是直径的常规图,最多为$ 2 $。 $ {\ rm dim} _ {\ rm ms}(g)= 2 $的图形$ g $在多项式时间中描述并识别。当$ g $和$ h $的词典产物的下限是$ h $完整或无进取的,并且确定了极端图。证明$ {\ rm dim} _ {\ rm ms}(p_s \,\ square \,p_t)= 3 $ for $ s \ ge t \ ge ge 2 $。

The outer multiset dimension ${\rm dim}_{\rm ms}(G)$ of a graph $G$ is the cardinality of a smallest set of vertices that uniquely recognize all the vertices outside this set by using multisets of distances to the set. It is proved that ${\rm dim}_{\rm ms}(G) = n(G) - 1$ if and only if $G$ is a regular graph with diameter at most $2$. Graphs $G$ with ${\rm dim}_{\rm ms}(G)=2$ are described and recognized in polynomial time. A lower bound on the lexicographic product of $G$ and $H$ is proved when $H$ is complete or edgeless, and the extremal graphs are determined. It is proved that ${\rm dim}_{\rm ms}(P_s\,\square\, P_t) = 3$ for $s\ge t\ge 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源