论文标题

双曲线混乱中的反向传播通过伴随阴影

Backpropagation in hyperbolic chaos via adjoint shadowing

论文作者

Ni, Angxiu

论文摘要

为了将反向传播方法概括为离散的时间和连续的双曲线混乱,我们介绍了在Covector Fields上作用的伴随阴影操作员$ \ MATHCAL {S} $。我们表明$ \ MATHCAL {S} $可以等效地定义为: (a)$ \ MATHCAL {s} $是线性阴影操作员$ s $的伴随; (b)$ \ MATHCAL {S} $由`split tht the stapagate''扩展公式给出; (c)$ \ MATHCAL {S}(ω)$是$ω$的唯一有限的不均匀伴随解决方案。 通过(a),$ \ Mathcal {s} $ auppointly表示阴影贡献,这是线性响应的重要部分,其中线性响应是长期统计信息相对于系统参数的派生。通过(b),$ \ Mathcal {s} $还表示线性响应的另一部分,即不稳定的贡献。通过(c),可以通过Ni和Talnikar中的非感染阴影算法来有效计算$ \ Mathcal {s} $(2019 J.Comput。395690-709),这与常规的返回算法相似。对于连续的时间案例,我们还表明,线性响应将定义明确的分解构成对阴影和不稳定的贡献。

To generalize the backpropagation method to both discrete-time and continuous-time hyperbolic chaos, we introduce the adjoint shadowing operator $\mathcal{S}$ acting on covector fields. We show that $\mathcal{S}$ can be equivalently defined as: (a) $\mathcal{S}$ is the adjoint of the linear shadowing operator $S$; (b) $\mathcal{S}$ is given by a `split then propagate' expansion formula; (c) $\mathcal{S}(ω)$ is the only bounded inhomogeneous adjoint solution of $ω$. By (a), $\mathcal{S}$ adjointly expresses the shadowing contribution, a significant part of the linear response, where the linear response is the derivative of the long-time statistics with respect to system parameters. By (b), $\mathcal{S}$ also expresses the other part of the linear response, the unstable contribution. By (c), $\mathcal{S}$ can be efficiently computed by the nonintrusive shadowing algorithm in Ni and Talnikar (2019 J. Comput. Phys. 395 690-709), which is similar to the conventional backpropagation algorithm. For continuous-time cases, we additionally show that the linear response admits a well-defined decomposition into shadowing and unstable contributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源